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SUMMARY 

 

 Cartilage tissue provides compressive resistance in diarthrodial joints, and has 

been shown to be regulated by mechanical signals, in particular with regard to production 

of extracellular matrix proteins.  However, less is understood about how chondrocytes in 

regions not solely purposed to provide compressive resistance may also be affected by 

mechanical forces.  The growth plate is a small layer of cartilage that functions to 

facilitate longitudinal growth of the long bones from in utero through post-adolescent 

development.  The growth plate maintains distinct regions of chondrocytes at carefully 

regulated stages of endochondral ossification that are in part characterized by their 

morphology and differential responsiveness to vitamin D metabolites.  Understanding if 

mechanical cues could be harnessed to accelerate or delay the process of endochondral 

ossification might be beneficial for optimizing tissue engineering of cartilage or 

osteochondral interfaces.  This study focused on three aims to provide a basis for future 

work in this area: 1) Develop a cell line culture model useful for studying growth plate 

chondrocytes, 2) Determine the response of primary growth plate chondrocytes and the 

cell line model to fluid shear stress, and 3) determine if expression of integrin beta 1 is 

important for the observed responses to shear stress.  The findings of this study suggest 

that inorganic phosphate can promote differentiation in coordination with the 

24,25(OH)2D3 metabolite of vitamin D, and that fluid shear stress generally inhibits 

differentiation and proliferation of growth plate chondrocytes in part through an integrin 

beta 1 mediated pathway. 
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CHAPTER 1. SPECIFIC AIMS 

 

Cells are known to be responsive to mechanical stimuli, and for some types of 

cells mechanical environment may be an important parameter for homeostatic function.  

Numerous studies have considered the effect of various mechanical stimuli on 

chondrocytes involved in the joints, such as articular cartilage or meniscal fibro-cartilage, 

both in normal or arthritic conditions.  Less is known about the effect of mechanical 

stresses on chondrocytes found in the growth plate.  While various types of mechanical 

stimuli modulate chondrocyte function, cartilage is a highly hydrated tissue and a certain 

amount of fluid shear stress should be experienced by cells as water is expelled during 

loading, and osmotically drawn back into the tissue during unloading.  A similar process 

is likely to occur in the cartilage of the growth plate.   

The growth plate is a remaining center of endochondral ossification that persists 

after in utero development of the long bones to be closed later during post-adolescence or 

adulthood.  Some evidence suggests that mechanical loading may even begin to play a 

role in joint development in the fetal temporal-mandibular joint [1, 2] and hip [3].  How 

growth plate chondrocytes experience shear is not well understood.  Moreover, it may 

change markedly with the state of chondrocyte maturation within the growth plate.  The 

chondrocyte phenotype is uniquely staged through endochondral ossification in both a 

temporal and spatial manner.  Not only do the cells show changes in shape and size, but 

they also vary in their extracellular matrix composition and in their responses to local and 

systemic factors.  One characteristic of the resting zone chondrocytes found in the growth 

plate is the responsiveness of these particular cells to the specific Vitamin D metabolite 
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24R,25(OH)2D3, whereas less differentiated mesenchymal cells lack responsiveness to 

this hormone and more differentiated hypertrophic growth plate chondrocytes lose 

responsiveness, becoming sensitive to 1,25(OH)2D3 [4-6].  We will take advantage of this 

marker of endochondral development to establish our experimental model for the studies 

proposed below. 

The overall goal of this project is to contribute to the understanding of how fluid 

shear stress effects the differentiation of chondrocytes in an endochondral ossification 

pathway.  A better understanding in this area will contribute to the basic understanding of 

the growth plate and developmental biology, as well as potentially progress tissue 

engineering strategies that involve the growth plate, bone fracture callus healing [7], 

osteochondral plugs [8], or even developmental biology of joints [2].  This project will 

focus on the general hypothesis that fluid shear stress modulates the differentiation of 

resting zone chondrocytes. 

 

Specific Aim 1: To develop a cell line culture model that can be induced and 

controlled to a chondrocytic phenotype with sensitivity to 24R,25(OH)2D3, 

indicating comparability to resting zone growth plate chondrocytes. 

The objective of this study was to establish a relevant chondrocytic cell culture 

model that can be shown to be phenotypically comparable to resting zone chondrocytes 

in their responsiveness to 24R,25(OH)2D3.  This also provided an additional cell source 

for later experiments, allowing for some experimental possibilities that were more suited 

for a cell line.  The hypothesis was that the ATDC5 cell line, which has been shown 

extensively in the literature to be chondrogenic, can be induced to a differentiated state in 
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which it is responsive to 24R,25(OH)2D3.  We used biochemical and radioactive assays to 

determine if the cells are responding significantly to 24R,25(OH)2D3. 

 

Specific Aim 2: To determine the effect of fluid shear stress on rat costochondral 

resting zone chondrocytes as well as on ATDC5 cells differentiated to a resting zone-

like phenotype. 

The objective of this study was to determine if fluid shear stress will alter the 

differentiation or phenotypic expression of resting zone chondrocytes in either a time or 

dose dependent manner.  Both primary rat costochondral resting zone cells and ATDC5 

cells differentiated to an RC-like phenotype were exposed to shear stress at differing 

lengths of time or amount of shear stress and then measured for changes in markers of 

chondrocytic phenotype.  The working hypothesis was that shear stress would affect 

some or all of the differentiation markers in a dose dependent manner. 

 

Specific Aim 3: To determine if expression of integrin β1 is important for the effects 

of shear stress on resting zone chondrocyte differentiation. 

The objective of this study was to determine if integrin β1 expression is important 

for translating the effects of fluid shear stress on chondrocyte differentiation.  The 

ATDC5 cell line was transduced with lentiviral particles delivering a plasmid inducing 

permanent expression of a small hairpin loop RNA that targeted the degradation of 

integrin β1 mRNA.  The effectiveness of silencing integrin β1 was validated at both the 

mRNA and protein expression level.  The most effective shear stress treatment from Aim 

2 that altered differentiation of the chondrocytes was used to determine if expression 
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level of integrin β1 was critical to the shear-induced effects on differentiation.  The 

working hypothesis was that a reduction in integrin β1 expression will result in a reduced 

effect of the shear stress. 
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CHAPTER 2.  BACKGROUND AND LITERATURE REVIEW 

 

ENDOCHONDRAL OSSIFICATION 

Mammalian skeletal development occurs mostly through a complex and carefully 

regulated process known as endochondral ossification.  In this process, primary 

cartilaginous members formed in the embryo begin to mineralize at multiple initiation 

sites to lay the first calcified matrix that will be remodeled to proper bone tissue.  

However, the primary cartilaginous members are not completely calcified into bone at 

birth or even well into adulthood.   Cartilage tissue remains at the end of long bones to 

form the protective cushion at diarthrodial joints.  This articular cartilage will be needed 

to protect the underlying bone tissue from increased compressive loading that will stress 

the skeletal frame at joint interfaces as the individual increases ambulatory motion and 

weight bearing with longitudinal growth.  The cartilage at joints is intended to remain 

well into adulthood to perform its needed function.  However, this tissue often suffers 

degeneration from osteoarthritis in many individuals as they age beyond adulthood.  

Endochondral ossification is mostly relevant to skeletogenesis, however, the regulation of 

this process or related processes may be crucial for postnatal functions such as 

maintenance of articular cartilage, proper function of growth plates, and the ossification 

of a bone fracture cartilage callus.  If this process could be regulated in a controlled ex 

vivo setting, it would open great potential for orthopedic tissue engineering [1].   
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Growth Plate  

Along with articular surfaces of diarthrodial joints, another post-natal cartilage tissue is 

preserved at least until adult height is achieved.  This important cartilage tissue is called 

the growth plate and consists of a corrugated, thin layer of cartilage at the metaphyseal 

region of long bones.  The function of the growth plate is to enable much slower 

processes of endochondral ossification to occur over the development of the individual 

until full adult skeletal size is achieved.  At this point the growth plate may fuse and 

remodel to strictly bone tissue, depending on anatomical location of the growth plate and 

species.     

Despite the relatively thin width of the growth plate in comparison to the rest of 

the bone, the growth plate has a very distinct layered morphology (Figure 2.1).  Near the 

epiphyseal border marks the resting zone of the growth plate, where the chondrocytes 

exhibit the least mature phenotype.  In this region the cells are relatively small and 

dispersed randomly throughout significant amounts of matrix.  Moving towards the 

diaphyseal center of the bone, the growth plate becomes more populated with larger cells 

that have assembled in columnar fashion and are surrounded by reduced amounts of 

matrix.  This area is known as the growth or proliferative zone.  Below this region, the 

chondrocytes enter a hypertrophic zone where the cells have undergone significant 

hypertrophy, displaced much of the extracellular matrix, and also have begun to 

mineralize their matrix at the lower end of this region.  This mineral matrix interfaces 

with the underlying mineral of the bone tissue where leading edge angiogenesis occurs 

allowing for chondroclast and osteoclast cells to approach and migrate to mineral 

surfaces.  These cells resorb mineral surfaces and allow for osteoblasts to follow 
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afterwards for deposition of newly layered mineralized matrix following the pattern of 

bone, including the deposition of collagen type I.     

 

Figure 2.1. Schematic of the growth plate.  Resting zone cells are the least mature 
chondrocytes near the epiphyseal region of the bone.  Descending through the regions of 
the growth plate the chondrocytes exhibit a distinctive morphology as they progress in 
differentiation and the stages of endochondral ossification.  Cells in the proliferating zone 
organize in columnar arrangement, followed by hypertrophic growth of the cells and 
ultimately calcification of the matrix surrounding the cells to interface with the mineral of 
the underlying and remodeling bone. 
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Vitamin D Metabolite Regulation of Growth Plate Zones 

Furthermore, the thin-layered anatomy of the growth plate is not only 

morphologically distinct, but also has been shown to be regulated by tightly controlled 

chemical inducers of differentiation and signaling.  In particular, vitamin D metabolites 

have shown to act very specifically at unique stages within the differentiation spectrum of 

the growth plate.  The metabolites 1,25(OH)2D3 and 24,25(OH)2D3 have been shown to 

have specific targeted actions in the growth zone and resting zone, respectively [2].  

Growth zone chondrocytes exhibit nuclear receptor mediated genomic responses to 

1,25(OH)2D3  as well as evidence of membrane-associated rapid response regulation by 

this hormone as well.  Additionally, the resting zone chondrocytes have exhibited rapid 

responses to the 24,25(OH)2D3 metabolite strongly suggesting evidence of membrane 

receptor regulation of this hormone also [3].  Moreoever, the membrane actions of these 

hormones is significant when considering that they are shown to regulate matrix vesicles 

that contain no genomic material, yet are uniquely regulated by specific metabolites when 

derived from resting or growth zones.  These signals allow for the cells to carefully 

regulate the deposition of mineral that can be initiated from matrix vesicles deposited into 

the matrix after the cells have achieved a preferred distance apart.  These data suggest 

that growth zone chondrocytes are capable of metabolizing their own specific autocrine 

and paracrine hormone signals to direct mineralization and differentiation carefully.         
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Inorganic Phosphate Regulation of Endochondral Ossification 

Other factors have been shown to regulate progression of endochondral 

ossification.  Growth plate chondrocytes become competent for mineralization of their 

surrounding matrix as they enter the hypertrophic stage of differentiation, which 

inherently requires the regulation of high amounts of phosphate ions as the cells prepare 

to use this ion as a source of mineral formation.  It has also become apparent that this ion 

itself can act as a signal to the chondrocytes to increase their markers of differentiation 

[4] and eventually increase apoptosis [4, 5].   

Apoptosis in the hypertrophic region is important to allow the remaining 

mineralized matrix to be turned over into bone tissue, thus preventing the problematic 

extension of the growth plate.  This process appears to be regulated in part by Bcl-2 

family proteins regulate Pi-induced apoptosis of the growth plate, which is crucial to 

proper lengthening and mineralization of the hypertrophic region of the growth plate [6].  

Apoptosis may not be absolutely crucial to calcification occurrence, as suggested by one 

avian model [7], but generally both apoptosis and calcification are nearly concurrent 

activities in the growth plate.   

Cell Line Model for Endochondral Ossification 

Well characterized cell lines offer a useful tool for studying cellular physiology.  

The ATDC5 cell line has been a useful for studying the process of chondrogenesis and 

differentiation.  This cell line was clonally derived from a murine embryonic limb bud, 

and was shown to differentiate through a chondrogenic pathway when cultured with 

insulin after confluency [8].  Studies with additional factors besides insulin have also 
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shown insightful findings about other growth and differentiation factors.  Palmer et al. 

present a study that indicates that TGFβ-1 upregulates expression of inorganic phosphate 

(Pi) transporter Glvr-1 [9].  Magne et al. have presented multiple studies indicating that 

Pi itself can act as a signal to ATDC5 cells [4, 10], which corroborates with other studies 

in other cell types [11-14]. Other studies have indicated that ATDC5 cells produce factors 

that help regulate mineralization in their matrix [10, 15-17].  Shukunami et al. also 

showed that BMP-2 can regulate phases of differentiation in this cell line [18].  The 

ATDC5 cell line has become a well accepted cell line in the literature for studying 

chondrogenesis and the chondrocytic stages of endochondral ossification that occur in the 

growth plate.  No reported work has tried to define this cell line with progressive 

differentiation as defined by responsiveness to multiple vitamin D metabolites. 

 

MECHANICAL STIMULATION AND HOMEOSTASIS IN CARTILAGE 

Many tissues perform a function that requires the ability to withstand certain 

levels of mechanical loads and stresses, and often the tissues are innately tuned to 

respond to the variations in these loads with an adaptive response.  This can be in a short 

or long time scale as may be suitable for the optimal function and capability of the tissue.  

For example, blood vessels are able to respond to higher blood pressures and flows by 

releasing NO to induce an expansion in the arterial wall allowing for a reduction in 

pressure [19].  On a much longer time spectrum, bone tissue has long been observed to 

alter its density over several days and weeks in adaptive response to increased or 

decreased loading.  This is observed in astronauts subjected to extended microgravity 
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who lose significant bone mineral density during time in space [20].  Alternatively, 

patients with osteoporosis are often encouraged to do weight-bearing exercise because it 

is well known to promote bone density (or at least delay bone loss in osteoporosis 

patients) [21].  This phenomenon of bones modifying their architecture in response to 

mechanical loading was first observed by Julius Wolff in the 19th century and has been 

coined as Wolff’s Law [22].  In the case of Wolff’s Law, there is an apparent balancing 

act for the body to provide the necessary density and strength to the skeletal bones so 

they can withstand the load bearing forces applied to them, with the alternate need of the 

body to not store unnecessary calcium or phosphate mineral in the bone tissue.     

Cartilage is also responsive to mechanical loading.  In an analogous sense to 

bone, cartilage also responds to mechanical stimuli by trying to provide the essential 

extracellular matrix components that are necessary to withstand the experienced 

mechanical loads and to offset any damage that may be accrued from the loading as well.  

It has been shown that chondrocytes will alter their rates of matrix synthesis and 

catabolism in response to different types and durations of mechanical loading.   

Cartilage Matrix Regulation by Mechanical Signals 

Cartilage is a highly hydrated tissue with a matrix that is composed mostly of 

collagen type II and proteoglycan molecules.  The proteoglycan molecules contain 

glycosaminoglycans that are highly sulfated and because of their charged nature are very 

hydrophilic.  This allows for the compressive resistance of cartilage because water is not 

easily removed from the matrix by compression.  The collagen molecules offer tensile 

strength to cartilage.  These trimeric molecules exhibit a random orientation and allow for 
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tensile strength in multiple directions, although may tend to align in regions of the 

cartilage where tensile forces or mostly unidirectional such as the superficial zone of 

articular cartilage [23].  One other important though much less abundant protein in 

cartilage tissue is cartilage oligomeric matrix protein (COMP).  This pentameric 

glycoprotein facilitates proper three-dimensional arrangement of other matrix 

components, particularly collagen molecules [24, 25].  The absence or mutation of 

COMP can result in significant pathological phenotypes such pseudoachondroplasia [26]. 

Chondrocytes can experience both compressive and tensile forces in vivo and also 

fluid shear stress when water is relocated during compression [27].  It is not surprising 

given the necessity of the cartilage matrix to serve its biomechanical function, that 

chondrocytes would be responsive to mechanical stresses in attempt to properly maintain 

the composition of the matrix.  However, studies have yielded varied results as to the 

response of chondrocytes in their matrix maintenance in response to diverse mechanical 

stimuli.  Furthermore, as cartilage is by necessity an avascular tissue, it also has limited 

self-repair capability following injury since migration of stem cells cannot be easily 

achieved into the area.  When cartilage is severely damaged from traumatic injury or 

excessive loading, it may result in surviving chondrocytes experiencing abnormal 

physical stresses not occurring within normal tissue.  These abnormal stresses can 

exacerbate the cartilage degradation as the cells are unable to respond with proper matrix 

synthesis under the altered mechanical conditions [28].  
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In Vitro Application of Shear Stress 

Various devices have been crafted and adapted for the application of various types 

of mechanical forces on cultures of cells.  For this project, the application of fluid shear 

stress was implemented with a cone-plate viscometer device.  This apparatus has been 

adapted for application of shear stress on monolayer cell culture in a Petrie dish.  The 

design is based on a rotational cone and a stationary plate (the Petrie dish) with liquid 

media filling the space between the two parts.  When the cone rotates at a low velocity 

then flow is usually characterized be a small Reynolds number (Re < 1), which means 

that the flow will be essentially azimuthal (or predominantly only in the rotational 

direction) and laminar.  In this case, shear stress can be approximated by the equation τ  = 

µω/α where τ  is shear stress, µ is fluid viscosity, ω is angular velocity, and α is angle of 

the cone from the surface of the plate (Figure 2.2).  The device used in these experiments 

allowed for 8 individual culture samples to be sheared simultaneously in the same 

experiment (Figure 2.3).  This device has been characterized generally in previous 

literature [29-31] and related models have been reported for studies involving 

chondrocytes [32, 33] and endothelial cells [34-37].            

Mechanoregulation of Proteoglycan 

Aggrecan as a major component of the proteoglycan complex, has been shown to 

be altered in expression in response to mechanical stress. Le Maitre et al showed that 

aggrecan was highly reduced in oscillatory compression in chondrocytes from the 

nucleus pulposa from the intervertebral disc of the human spine [38] and that this result 

may be mediated by integrin α5β1 in healthy, but not in degenerate discs, suggesting the 
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possibility of multiple mechanotransduction pathways, that may be altered in certain 

pathological conditions.  This assertion was strengthened by evidence published by 

Holledge et al  that showed that mechanical stimulation in normal chondrocytes resulted 

in increased GAG production, but not in osteoarthritic chondrocytes [39].  Salter et al 

showed that osteoarthritic and normal chondrocytes have different responses to 

mechanical stress in their membrane polarization [40].   

Figure 2.2. Schematic of Cone-Plate Shear Apparatus.  The base of a cone is 
submerged into the culture media above the cell monolayer.  Laminar, azimuthal 
(following direction of rotation) flow occurs when a dimensionless ratio (analogous to 
Reynold’s Number) R < 1 where R is defined to be R = r2ωα/12υ where r = radial 
distance from center, ω is the angular velocity, α is the angle of the cone surface from the 
plate, and υ is the kinematic viscosity.   Under these parameters the shear stress (Tω) 
across the plate can be estimated by Tω = µω/α where µ is viscosity of the media.  Image 
provided courtesy of Dr. Hanjoong Jo and adapted slightly from [37]. 
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Figure 2.3. Photograph of Cone-Plate Shear Apparatus.  This particular model can 
hold 4 separate cone-plate devices driven by a magnetic stir plate (cone contains a 
magnetic stir bar).  Petrie dishes are securely suctioned onto a base plate via a vacuum 
pump to limit movement and curvature of the base of the Petrie dishes.  For this study, 
two similar devices as shown above were available allowing for 8 concurrently sheared 
samples in a single experiment.  Static control samples were cultured in the same 
incubator during shear.   

 

Mechanoregulation of Collagen Type II 

Aggrecan and Collagen type II mRNA was increased with hydrostatic pressure 

[41].  Collagen type II was upregulated in a parallel plate designed bioreactor for tissue 

engineering, suggesting steady, laminar shear flow can in some cases also upregulate 

desired matrix proteins and that this shear type may be useful for bioreactor design 
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potentially [42].  Other reports suggest that fluid shear stress reduces expression of 

aggrecan and collagen type II [43]. 

Mechanoregulation of Cartilage Oligomeric Matrix Protein 

Cartilage oligomeric matrix protein has also been shown to be responsive to 

shear.  It is known that COMP serum levels are elevated in marathon runners [44] and in 

osteoarthritic patients [45, 46].  COMP appears to be important in the binding of 

glycosaminoglycans, integrins, and collagen [47], and is thought to be important to 

organizing the arrangement of these molecules.  Wong et al showed that unconfined 

cyclic compression of chondrocytes resulted in a large increase in COMP expression 

[48].  Members of this group also went on to show that blocking integrin Beta 1 could 

inhibit this upregulation of COMP by mechanical stimulation [49].  Oscillatory motion 

was shown to upregulate COMP expression in chondrocytes in a 3D-scaffold [50].   

Apoptosis and Proliferation of Chondrocytes Under Shear Stress 

 Under some conditions, shear stress has been shown to induce signals that 

promote apoptosis in chondrocytes.  Abulencia et al demonstrated that fluid shear stress 

can induce apoptosis in monolayer chondrocytes at higher levels of shear (10-20dyn/cm2) 

via a COX-2 mediated pathway.  However, apoptosis was less apparent in these cells at 

lower shear (4 dynes/cm2) even when exposed for up to 24 hours [51].  Shear stress 

increased release of nitric oxide (NO) and nucleosomal degradation in osteoarthritic 

chondrocytes as well as decreased the level of anti-apoptotic factor bcl-2 [33].  Another 

study from that group showed that NO release during shear affected matrix molecule 

mRNA production.  Shear stress up to 24 hours and then incubated at static conditions for 
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24 hours showed a decrease in collagen type II mRNA and aggrecan mRNA.  Inclusion 

of NO antagonists reduced this effect of the shear, suggesting these effects occur through 

NO induction [52].  Martin and Buckwalter showed that human articular cartilage under 

high shear stress can increase apoptotic activity due to shear-induced oxidative stress 

[53].     

Shear stress and fluid flow can regulate cell proliferation as well.  Lin et al 

showed that chondrocytes perfused in a bioreactor with constant fluid flow could increase 

the proliferation of cells dependent on level of shear over long exposure time [54].   

Other reports indicate that chondrocytes could increase proliferation after 96 hours of 

fluid shear likely via a TGF-Beta1 pathway [55].   

Shear stress has been shown to alter proliferation differently in other cell types.  

Endothelial cells have been shown to increase proliferation measurements under shear 

stress, especially under oscillatory flow [56], but were also shown to be inhibited in 

laminar fluid flow via a cyclin-dependent kinase inhibitor p21 [57].  Osteoblasts have 

also been shown to exhibit shear-induced proliferation via multiple pathways [58], 

including through Erk1 and Erk 2 [59].  The variety of reports of fluid shear effects on 

cells of different phenotypes indicate much is still not understood about common effects 

of mechanical stresses on general cellular behavior, and which responses are specific to 

cell type.   
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Mechanical Loading during Endochondral Ossification 

Mechanical Influence During Embryonic Development 

It has also been observed through creative experimental methods that mechanical 

stresses may play a role in endochondral ossification as early in development as in utero.  

Habib et al. showed that by suturing the jaw of mice embryos so that fetal jaw movement 

was restricted resulted in disorganized osteochondral boundary formation of the 

temporal-mandibular joint, indicating that motion and mechanical stresses may help 

develop proper boundaries of this joint [60, 61].  Other studies have shown related results 

in the rat hip [62] and chick skeleton [63].    

Fracture Callus Loading 

When a bone fracture occurs of significant size or severity, it generally will heal 

through a process of endochondral ossification.  This occurs via the formation of a callus 

that forms within the fracture, converts to cartilage, and ultimately remodels back to bony 

tissue in favorable circumstances.  The time scale of this process however is much 

quicker than the process occurring in the growth plate and has been shown to be 

responsive to appropriate mechanical loading [64].  A combination of hypoxia and 

compressive stress is thought to guide the cells to differentiate into chondrocytes at the 

center of the callus, with slightly altered responses at other regions of the callus [65].  

Goodship et al showed that even low-magnitude loading of fracture callus at high 

frequency can increase the stiffness and mineral deposition around the fracture site 

compared to rigidly fixed fractures [66].   
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Growth Plate Loading 

Compressive loading of the growth plate in vivo has shown that mineralization 

rate can be inhibited and hypertrophic chondrocytes can increase in number [67].  

Another study showed that sustained in vivo compression inhibited longitudinal growth 

more than only half-time loading periods [68].  However, ex vivo bending of mouse bone 

anlagen suggest that bending increased bone collar formation but did not alter 

chondrocyte differentiation on bone elongation [69].  In vivo studies provide relevant 

information for the greater physiological perspective, but are also subject to significant 

variability like in vitro studies, and sometimes the underlying source of mechanisms 

involved can be hard to decouple such as which cells are effected most by the mechanical 

signals and are secreting the signals that are most influential to the overall response of the 

entire tissue or organ.  No studies have shown specifically how mechanical loading can 

affect uniquely chondrocytes from the least mature stage in endochondral ossification, 

such as those found in the resting zone of the growth plate. 

 

INTEGRIN MEDIATED MECHANOTRANSDUCTION 

Mechanotransduction refers to the process whereby mechanical signals are 

converted to chemical mediators that ultimately realize the cellular response to physical 

stimuli.  There has been evidence that many possible pathways may be involved in 

cellular responses to mechanical stimuli, including cell-cell interactions such as 

cadherins, stretch activated ion channels, and streaming potentials induced by convection 

of extracellular ion concentrations.  Additionally, more and more evidence is continuing 
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to implicate a significant role for integrin receptors in mechanotransduction, including in 

chondrocytes.   

Structures both inside and outside the cell contribute to the mechanical properties 

of a tissue, but integrins provide the primary attachment site between a cell and its 

extracellular matrix.  Thus, if a mechanical stimulus is experienced in the ECM or across 

the surface of an adherent cell, integrin-ligand interactions will be a significant anchor 

point where that stimulus can be relayed from outside to inside the cell.  Integrins consist 

of a family of heterodimeric, transmembrane receptors that bind to specific ligands in the 

ECM and result in cellular adhesion sites.  Each integrin has an α and β subunit that 

interact noncovalently and over 20 combinations of these dimer pairs have been found to 

occur [70].  Both subunits have a large amino-terminal head of over 700 residues that is 

expressed outside the membrane.  Each subunit has a single domain that crosses through 

the membrane and a smaller cytoplasmic tail domain that ranges between about 13-70 

residues [71].   

Integrins are a logical candidate to serve as a mechanoreceptor due to their 

significant role in cell adhesion and spreading.  They influence cell shape and are tension 

points where stresses acting on the whole cell body would be transmitted to the portions 

of matrix adherent to the cell.  Integrins are also involved in transmitting cellular signals.  

When integrins bind, they can recruit other integrins to their proximity and also 

participate in the assembly of what is known a focal adhesion complex.  These complex 

assemblies form when the transmembrane integrin receptor is bound to an extracellular 

protein and involve the intracellular recruitment of focal adhesion kinase, talin, paxillin, 

and actin assemblies among others. 
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Integrin Mediated Mechanotransduction in Chondrocytes 

Many integrin subunits have been found to be expressed in chondrocytes, 

including alpha 1,2, 5, v and beta 1 and 3.   The β1 integrin subunit has been shown to be 

prominently expressed in chondrocytes [72] including the growth plate [73] and to play a 

role in chondrocyte adhesion to cartilage under shear stress [74] and cyclical pressure-

induced strain [75].  Little to no work has focused on the role of integrin β1 in 

mechanotransduction in the growth plate, particularly with respect to differentiation 

along an endochondral pathway.  It has been shown in a conditional knock out mouse that 

integrin beta 1 is important for the proper development and orientation of chondrocytes in 

the growth plate [76], suggesting this receptor subunit could potentially be important for 

mechanically-induced differentiation within the context of ligand signaling from the 

extracellular matrix. 

Integrin beta 1 has especially been shown to be involved in mechanotransduction 

in chondrocytes, especially with its dimeric partner alpha 5 [77].  This integrin receptor 

binds primarily to the protein fibronectin, but also can bind to some collagen molecules 

and vitronectin.  The receptor α5β1 recognizes the peptide sequence RGD (arginine, 

glycine, aspartic acid).  It has been shown that mechanically upregulated expression of 

COMP can be inhibited by inclusion of integrin beta 1 antibodies in the medium [49].  

Also, the use of RGD peptides prevented a mechanically induced decrease in aggrecan 

mRNA expression in non-degenerative nucleus pulposa cells (from cartilaginous 

intervertebral discs).  Interestingly, RGD containing peptides had not effect on cells from 

degenerative nucleus pulposa cells, suggesting that this pathological condition may 

include an alteration in mechanotranduction pathways [38].  Similar evidence was seen 
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for osteoarthritic chondrocytes in their modification of membrane polarity in shear when 

compared to normal cells [77].    TGF-Beta3 induced human chondrocytes to be 

responsive to dynamic compression by upregulating sulfate incorporation and thymidine 

incorporation, and these effects of compression were blocked by RGD containing 

peptides, but not by nonsense peptides [78].  This suggests some effects of mechanical 

stimulation require coordination or preparation by growth factors or other chemical 

modifiers.   
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CHAPTER 3. INORGANIC PHOSPHATE MODULATES RESPONSIVENESS 

TO 24,25(OH)2D3 IN CHONDROGENIC ATDC5 CELLS 

 

INTRODUCTION 

 The formation of mammalian long bones occurs through the process of 

endochondral development, which begins with mesenchymal condensation in the embryo 

to form cartilaginous limb buds.  Primary and secondary centers of ossification develop 

within the cartilage, ultimately becoming bone.  The ends of the bones, the epiphyses, are 

separated from the metaphyses and diaphysis by a region of cartilage called a growth 

plate, which is spatially organized into zones defined by the differentiation state of 

chondrocytes resident in that region of the tissue.  Nearest to the epiphysis is the reserve 

or resting zone.  Chondrocytes in this region produce an extracellular matrix enriched in 

type II collagen and proteoglycan aggregates containing sulfated glycosaminoglycans.  In 

embryonic bone, this region is relatively small as cells are rapidly progressing along the 

endochondral developmental pathway.  In contrast, in post-natal growth plates, the 

resting zone serves as a chondrocyte reservoir and represents a larger component of the 

tissue.  At the base of the resting zone, chondrocytes appear to align in columns to form 

the proliferative zone, in which they undergo rapid division, providing the major 

contribution of the growth plate to longitudinal bone growth [1].  Following proliferation, 

the cells undergo a prehypertrophic phase, transitioning into hypertrophy, a period in 

which the cells remodel their extracellular matrix to accommodate their increase in size 

and to prepare the matrix for calcification [2].  During this phase, many of the 

hypertrophic chondrocytes also undergo apoptosis, which causes the growth plate to 
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retain a consistent length despite continued growth of the bone.  This process depends 

upon coordinated mineralization of the matrix.  In conditions like vitamin D and 

phosphate deficient rickets, where the growth plate fails to become calcified, the 

hypertrophic zone continues to increase in length [3].   

 Previous work examining mouse and rat growth plates has shown that two 

metabolites of vitamin D, 24,25-dihydroxy vitamin D3 [24,25(OH)2D3] and 1,25-

dihydroxy vitamin D3 [1,25(OH)2D3], each play a role in regulating the process of 

endochondral development [4-6].  Chondrocytes from the resting zone exhibit specific 

sensitivity to 24,25(OH)2D3, whereas cells in the growth zone no longer exhibit the same 

responses to 24,25(OH)2D3 but have acquired specific sensitivity to 1,25(OH)2D3.  

24R,25(OH)2D3 stimulates extracellular matrix production by resting zone cells, 

increasing production of sulfated glycosaminoglycans [7].  In addition, it causes resting 

zone chondrocytes to produce extracellular matrix vesicles containing neutral 

metalloproteinases [8] and reduces total matrix vesicle metalloproteinase activity in vitro 

[9] and in vivo [10].  In contrast, 1α,25(OH)2D3 inhibits DNA synthesis in 

prehypertrophic and hypertrophic chondrocytes and reduces synthesis of sulfated 

proteoglycans [7], while increasing production of alkaline phosphatase-enriched matrix 

vesicles that contain increased metalloproteinase activity [10, 11].  Moreover, 

1α,25(OH)2D3 acts directly on matrix vesicles produced by these cells, activating resident 

phospholipases, causing loss of membrane integrity and release of matrix processing 

enzymes [12].  These observations suggest that 24R,25(OH)2D3 enhances matrix 

production and maintenance of resting zone cartilage, whereas 1α,25(OH)2D3 modulates 

the rate and extent of matrix degradation during chondrocyte hypertrophy.  Interestingly, 
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1α,25(OH)2D3 induces production of 24R,25(OH)2D3 by growth zone chondrocytes [13], 

suggesting cross-talk among cells at different maturation states in endochondral 

development. 

 Inorganic phosphate (Pi) has also been implicated in the differentiation of the 

growth plate by acting as a signal affecting the differentiation of mineralization-

competent cells [14-16].  The extracellular concentration of Pi is relatively high in the 

extracellular matrix produced by hypertrophic chondrocytes, in part due to the increased 

activity of matrix vesicle alkaline phosphatase [17].  Studies examining the effects of 

exogenous Pi on chondrocyte phenotype in post-fetal growth plates show that Pi can 

induce apoptosis [3, 18].  This suggests a feed-back loop in which 1α,25(OH)2D3 

activates matrix vesicle alkaline phosphatase, releasing Pi into the matrix and Pi then acts 

back on the chondrocytes to induce apoptosis.   

It is less clear how Pi might interact with 24R,25(OH)2D3.  To address this 

question, we took advantage of the embryonic ATDC5 cell model.  This prechondrocyte 

cell line offers a useful culture system for studying the progression of endochondral 

development.  When confluent cultures of ATDC5 cells are grown in high insulin media, 

they form cartilage nodules that exhibit the differentiation sequence typical of long bone 

growth plates [19, 20].  1α,25(OH)2D3 has been shown to inhibit proliferation and 

differentiation of ATDC5 cells [21], but it is not known if these cells are regulated by 

24,25(OH)2D3. Interestingly, Pi has been shown to be a regulator of chondrogenic 

differentiation and apoptosis in these cells, including upregulation of collagen type X, a 

marker of maturation in the hypertrophic zone of the growth plate [22, 23].  Pi was also 

shown to regulate expression of matrix Gla protein (MGP) via ERK1/2 in both ATDC5 
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cells and primary growth plate organ cultures [24].  MGP is an inhibitor of matrix 

calcification [25], suggesting that Pi may induce production of factors that retard 

endochondral ossification like 24R,25(OH)2D3, as well as production of factors that 

stimulate chondrocyte maturation and apoptosis.   

The purpose of the present study was to determine if Pi treatment causes ATDC5 

cells to become responsive to 1α,25(OH)2D3 or 24R,25(OH)2D3 and if so, what are the 

consequences to endochondral maturation of the cells.  The physiological importance of 

Pi is supported by the observation that active ion transport through the membrane is 

required [26].   

 

METHODS AND MATERIALS 

Cell Culture 

 ATDC5 cells were cultured in a maintenance medium consisting of a 1:1 ratio of 

DMEM/F12 media (Cellgro, Manassas, VA) with 5% fetal bovine serum (FBS) 

(Hyclone, Logan, UT), 10 µg/ml human transferrin (Sigma Chemical Company, St. 

Louis, MO), 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA), and 3 x 10-8 M 

sodium selenite (Sigma).  After reaching confluence cells were cultured with 

differentiation media, which is identical to maintenance media with the addition of 10 

µg/ml bovine insulin (Sigma) and 50 µg/ml ascorbic acid (Sigma) [19, 27].  At 10 days 

post-confluence, cells were cultured for 24 hours in differentiation media supplemented 

with Pi (0 to 20 mM beyond media basal level ) and 10% FBS (10% FBS was used to 

ensure sufficient serum proteins such as fetuin that help regulate pathologic precipitation 

of calcium phosphate crystals [28, 29]).  To make Pi-supplemented media, a more 
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concentrated volume of Pi was dissolved in warm DMEM/F12 (37˚C) using molar ratios 

of 4 moles of dibasic sodium phosphate Na2HPO3 (Sigma) to one mole of monobasic 

sodium phosphate NaH2PO3(Sigma) [16].  When the phosphate salts were completely 

dissolved, the pH was adjusted to 7.4, and the solution was filter sterilized.  An 

appropriate aliquot from the concentrated Pi solution was added to the media preparation 

to result in the desired final concentration.  Control cultures were also treated on day 10 

with differentiation media with 10% FBS.  Some experiments also included concurrent 

treatment with the Pi transporter inhibitor phosphonoformic acid (PFA) (sodium 

phosphonoformate tribasic hexahydrate) (Sigma) to test the effect of phosphate transport 

inhibition.  Cells were returned to differentiation media with 5% FBS on day 11 for 

treatment with 24R,25(OH)2D3 or 1,25(OH)2D3 or ethanol vehicle (Sigma). 

Cell Number 

 Effects of Pi and 24R,25(OH)2D3 on proliferation were determined by measuring 

cell number at harvest and also as a function of DNA synthesis (described below).  To 

measure cell number, ATDC5 cells were treated with Pi for 24 hours followed by 

treatment with 24R,25(OH)2D3 for 24 hours.  At harvest, cells were washed twice with 

DMEM and trypsinized (Invitrogen) for 10 minutes.  Cells were resuspended in saline, 

and counted on a Beckman Coulter Z1 particle counter.   

Alkaline Phosphatase Activity 

 Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, alkaline]-

specific activity was used as an indication of chondrocyte differentiation. Harvested cells 

were suspended in 0.05% Triton-X.  After 3 freeze-thaw cycles to lyse the cells, alkaline 
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phosphatase activity in the cell lysates was determined [30] and normalized to protein 

content using the Macro BCA Protein Assay Kit (Pierce, Rockford, IL).   

[35S]-Sulfate Incorporation 

 To determine the role of inorganic phosphate in mediating the effects of 

24R,25(OH)2D3 on extra-cellular matrix production, proteoglycan synthesis was assessed 

by measuring [35S]-sulfate incorporation as described previously [31, 32].  Four hours 

prior to harvest, [35S]-sulfate (Perkin Elmer) was added to the cultures.  Cell layers were 

collected and dialyzed to remove any unbound [35S]-sulfate.  Radiolabeled incorporated 

into the cell layer was expressed as disintegration per minute normalized to protein levels 

for each sample.    

Histology 

 To verify that the ATDC5 cells produced a cartilage extracellular matrix, cultures 

were examined for collagen II protein by immunohistochemistry.  Cells were seeded into 

four well chamber slides.  Once the cells reached confluence they were cultured with 

differentiation media and were treated with 20 mM Pi on Day 10 and 10-7 M 

24,25(OH)2D3 on Day 11, respectively, or with the appropriate vehicle.  The cells were 

fixed for 30 min in 4% formalin in PBS, after which the cells were rinsed three times in 

PBS and stored in 75% absolute ethanol.  At time of staining, the fixed cultures were 

etched with 0.25% pepsin to expose the antigen, followed by PBS washes.  Cell 

monolayers were blocked with 2% horse serum in PBS.  Cells were then treated with the 

mouse anti-collagen II antibody (Hybridoma Bank, University of Iowa).  After more PBS 

washes a biotinylated horse anti-mouse IgG antibody was applied.  An alkaline 
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phosphatase ABC kit was used to visualize the biotin.  Samples were counterstained with 

haematoxylin, and visualized with light microscopy. 

RNA Extraction and RT-PCR 

 Cellular RNA was harvested using the Trizol® reagent kit (Invitrogen).  RNA 

samples were converted to cDNA using the Omniscript RT kit (Qiagen, Valencia, CA) 

and then PCR was performed using HotStar Taq Master Mix Kit (Qiagen).  PCR product 

was visualized using gel electrophoresis in 5% TBE Ready Gels (Biorad, Hercules, CA) 

and visualized on a Versadoc Model 1000 (Biorad).  To better visualize qualitative 

differences between groups, densities of the visualized bands were measured using 

Quantity One 4.4.1 Software (Biorad).  The gene specific primers (MWG Biotech, 

Huntsville, AL) used to amplify mRNA were as follows:  aggrecan -  5’ATC ACA GCC 

ACC ACT TCC 3’ (sense) and 5’ CTC CAC TCA CAG ATG TTA TAC C 3’ (anti-

sense), collagen type I - 5’ GGC TCC TGC TCC TCT TAG 3’ (sense) and 5’ TCT TCT 

GAG TTT GGT GAT ACG 3’ (anti-sense), collagen type II - 5’ GCG GTC CTA ACG 

GTG TCA G 3’ (sense) and 5’ ACC AGC CTT CTC GTC ATA CC 3’ (anti-sense), 

collagen type X - 5’ GCA CCT ACT GCT GGG TAA GC 3’ (sense) and 5’ GCC AGG 

TCT CAA TGG TCC TA 3’ (anti-sense), cartilage oligomeric matrix protein (COMP) - 

5’ CCA CTG ATG ATG ACT ATG C 3’ (sense) and 5’ GAT GTA GCC AAC TTG 

AGG 3’ (anti-sense), SOX9 - 5’ GAA CGA GAG CGA GAA GAG ACC 3’ (sense) and 

5’ GGC GGA CCC TGA GAT TGC 3’ (anti-sense), and glyceraldehyde phosphate 

dehydrogenase (GAPDH) - 5’ TTC AAC GGC ACA GTC AAG G 3’ (sense) and 5’ TCT 

CGC TCC TGG AAG ATG G 3’ (anti-sense).  The negative control was RNA from 
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mouse liver tissue and the positive control was RNA from mouse cartilage (Zyagen, San 

Diego, CA). 

DNA Synthesis 

 The effects of inorganic phosphate and 24R,25(OH)2D3 on DNA synthesis were 

determined by measuring [3H]-thymidine incorporation into trichloroacetic acid (TCA, 

Sigma) insoluble cell precipitates as previously described [33].  ATDC5 cells were 

treated for twenty-four hours with Pi followed by treatment with 24R,25(OH)2D3.  Two 

hours prior to harvest, [3H]-thymidine (Perkin Elmer, Waltham, MA) was added. 

Radioactivity in TCA-precipitable material was measured by liquid scintillation 

spectroscopy. 

Assays for Apoptosis 

 DNA Fragmentation:  Cells were pre-labeled with [3H]-thymidine (Perkin Elmer) 

for 4 hours and then treated with Pi for 24 hours followed by 24R,25(OH)2D3 for 24 

hours, or with Pi followed by vehicle. Cell monolayers were washed with DMEM three 

times to remove any residual unincorporated [3H]-thymidine and cells were lysed with 

TE buffer (10mM Tris-HCl, 1mM EDTA, 0.2% Triton X-100) for 30 minutes.  Cell 

lysates were centrifuged at 13,000g for 15 minutes to separate intact DNA from 

fragmented DNA.  The amount of incorporated [3H]-thymidine was determined in each 

fraction to establish the total amount of [3H]-DNA. 

 Caspase-3 Activity:  Caspase-3 activity was assessed using the colorimetric 

CaspACE™ Assay System (Promega, Madison, WI).  Cells were harvested 24h post 

treatment with 200µl cell lysis buffer followed by two 10 second periods of sonication.  

After harvest, 2µl of the caspase-3 selective substrate DEVD-pNA were added to each 
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well containing 100µl of cell lysate and incubated at 370C for 4h.  DEVD-pNA cleavage 

into the colorimetric product pNA was measured at 405nm.  Caspase-3 activity was 

normalized to protein content as determined by the Pierce Macro BCA Protein Assay Kit.   

Statistical Analysis 

 Data are presented as means + standard error of the mean (SEM) for six 

independent cultures for each variable.  The results for individual experiments are shown.  

To ensure validity of the results, all quantitative experiments were repeated at least two 

or more times.  Data were analyzed with ANOVA followed by Bonferroni’s modification 

of Student’s T-test.  Differences in means were considered to be statistically significant if 

the P value was less than 0.05.   

 

RESULTS 

 Pi treatment alone did not affect cell number except at the highest concentration 

(20 mM) tested (Figure 3.1A).  24R,25(OH)2D3 caused a small but significant decrease in 

the control cultures and further decreased the effects of 20mM Pi.  The expanded dose 

response (Figure 3.1B) confirmed that the effects of Pi on response to 24R,25(OH)2D3.  

Pi reduced ATDC5 cell number at 20mM.  Effects of 24R,25(OH)2D3 depended on Pi 

concentration and were dose-dependent from 19.5 to 20.25 mM with the greatest effect at 

20mM.   

 Pi had a biphasic effect on alkaline phosphatase activity in the ATDC5 cell 

lysates, with an increase over control levels at 20mM Pi (Figure 3.1C).  Effects of 

1α,25(OH)2D3 and 24R,25(OH)2D3 on alkaline phosphatase were also sensitive to Pi 

pretreatment.  1α,25(OH)2D3 and 24R,25(OH)2D3 reduced enzyme activity in control 
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cultures.  At 5 mM Pi, only 10-8M 1α,25(OH)2D3 reduced enzyme activity over that seen 

in Pi treated cells.  At 15 mM Pi, both 24R,25(OH)2D3 and 1α,25(OH)2D3 stimulated 

activity but at 20mM Pi, 24R,25(OH)2D3 caused a 30% increase in alkaline phosphatase.  

The stimulatory effect of 20mM Pi on 24R,25(OH)2D3-dependent alkaline phosphatase 

activity was confirmed in the expanded dose-response study (Figure 3.1D).   

 The response of ATDC5 cells to 24R,25(OH)2D3 was dose-dependent following 

pretreatment with 20 mM Pi.  The reduction in cell number was greatest at 10-7 M (Figure 

3.2A) and the stimulatory effect of alkaline phosphatase was greatest at 10-7 M 

24R,25(OH)2D3 (Figure 3.2B).  The effects of 20 mM Pi were specific based on their 

inhibition by phosphonoformic acid (PFA), which is a specific competitive inhibitor of 

the type III sodium dependent phosphate transporter Glvr-1.  PFA caused a dose-

dependent decrease in the Pi-induced reduction in cell number (Figure 3.2C) and a dose-

dependent decrease in Pi-activated alkaline phosphatase (Figure 3.2D).   

 Treatment with 20mM Pi on Day 10 reduced [35S]-sulfate incorporation at the 

end of Day 11, but this was restored to control levels when Pi was followed by treatment 

with 10-7 M 24R,25(OH)2D3 (Figure 3.3A).  ATDC5 cells produced an extracellular 

matrix containing type II collagen, regardless of the treatment regimen.  Cell layers 

stained positively with anti-type II collagen antibody whether they were untreated or 

treated with Pi followed by 24R,25(OH)2D3 (Figure 3.3B).  Semiquantitative analysis by 

RT-PCR showed that mRNA expression of chondrogenic markers was affected (Figure 

3.4).  Pi treatment reduced collagen II mRNA, but dramatically increased collagen X 

mRNA.  During direct exposure to Pi there was an increase in aggrecan and decrease in 

COMP mRNAs.  By itself, 24R,25(OH)2D3 had minimal effect on any markers, but the 



 40

steroid rescued collagen II mRNA and enhanced collagen X mRNA after pretreatment 

with Pi. 

 Pi caused an increase in ATDC5 apoptosis. Pi increased DNA fragmentation 

(Figure 3.5A), increased caspase-3 activity (Figure 3.5B), and reduced DNA synthesis 

(Figure 3.5C) by the end of Pi treatment.  The stimulatory effect of Pi on apoptosis was 

reversed by subsequent treatment with 24R,25(OH)2D3.  24R,25(OH)2D3 blocked DNA 

fragmentation in Pi-treated cells (Figure 3.5D), decreased caspase-3 activity (Figure 

3.5E), and increased DNA synthesis (Figure 3.5F).   
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 Figure 3.1.  Pi dose-dependently induces 24R,25(OH)2D3 sensitivity in ATDC5 cells. 
Cells were pretreated with control media or media with additional Pi (2.5 mM to 20.75 
mM) on Day 10 followed by vehicle, 10-8 M 1,25, or 10-7 M 24,25 on Day 11.  Cells were 
harvested at end of Day 11 for cell number (A,C) and alkaline phosphatase activity(B,D). 
# P < 0.05 v. vehicle within same Pi-treated group, * P < 0.05 v. 0mM Pi. (B,D).  
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Figure 3.2.  Response to 24R,25(OH)2D3 is dose-dependent on Pi pretreatment, and Pi 
transport is required for Pi-induced 24R,25(OH)2D3 sensitivity.  (A-B) Cells were treated 
with vehicle or 10-8 to 10-6 M 24R,25(OH)2D3 after pretreatment with 20 mM Pi. Cell 
number (A) and alkaline phosphatase activity (B) were measured.  # P <0.05 v. Control, * 
P <0.05 v. no 24,25(OH)2D3.  (C-D) Cells were treated with control or 20mM Pi on Day 
10 with 0-1mM of the Pi transport inhibitor PFA, and then treated on Day 11 with vehicle 
or 10-7 M 24R,25(OH)2D3.  Cell number (C) and alkaline phosphatase (D) were then 
measured.  * P < 0.05 treatment v. control for each PFA concentration. 
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Figure 3.3.  24R,25(OH)2D3 recovers Pi-induced reduction of sulfate incorporation, but 
neither treatment necessary for collagen type 2 protein expression.  (A) ATDC5 cells 
were treated with 20 mM Pi or control media on Day 10 and with vehicle or 10-7 
24R,25(OH)2D3 on Day 11.  Pi on day 10 resulted in lower sulfate incorporation by the 
end of day 11, but this effect was not seen for cells that received subsequent 
24R,25(OH)2D3 on day 11.  * P < 0.05 vs. control, # P < 0.05 vs. vehicle.  (B) ATDC5 
cells treated with 20 mM Pi on Day 10 and then 10-7 M 24R,25(OH)2D3 on Day 11 or 
with neither of these treatments were tested with immunohistochemical staining for 
collagen type II expression at the end of day 11.  Negative control was performed without 
primary antibody to test for nonspecific staining. 
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Figure 3.4.  Chondrocyte marker mRNA expression in ATDC5 cells during Pi and 
24R,25(OH)2D3 treatment.  ATDC5 cells were treated +/- 20 mM Pi on Day 10 and +/- 
10-7 M 24R,25(OH)2D3  on Day 11.  RNA was extracted at 0 and 6 hrs on Day 10 and 
Day 11 and RT-PCR was performed to assess mRNA expression of collagen I, II, and X 
and also SOX9, COMP, and aggrecan (AGG).  GAPDH was also assessed to confirm 
consistent mRNA levels between samples.  The density of each band compared to the 
density of the respective GAPDH band is shown numerically underneath each sample.  
Positive control (PC) is mRNA from mouse cartilage tissue and negative control (NC) is 
mRNA from mouse liver.  GAPDH band for negative control is shown to demonstrate 
RNA present in negative control sample.  
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Figure 3.5. Time course effects of Pi and 24R,25(OH)2D3 on apoptosis and [3H]-
thymidine incorporation.  ATDC5 cells were treated with 20 mM Pi or control on Day 10 
and then tested after 24 hours for DNA fragmentation (A), caspase-3 activity (B), or 
[3H]-thymidine incorporation(C).  At the start of Day 11 ATDC5 cells then received 
vehicle or 10-7 M 24R,25(OH)2D3 and were tested for the same assays after 24 hours (D-
F).  24R,25(OH)2D3 reduced apoptosis and increased proliferation on day 11 when 
treated with Pi on day 10. * P<0.05 vs. control. # P<0.05 vs. vehicle.  
 
 

DISCUSSION 

 The results presented here demonstrate that exogenous Pi is a potent inducer of 

endochondral development, not only for hypertrophic cells as has been reported 

previously[2], but also for prechondrocytes.  In response to relatively high levels of Pi, 

ATDC5 cells exhibited increased levels of mRNA for type II collagen and aggrecan.  

These cells also exhibited markers of endochondral development, including reduced 

expression of the early differentiation marker Sox 9, reduced cell numbers and increased 

alkaline phosphatase specific activity as well as elevated expression of the later-stage 

marker of hypertrophic chondrocytes, collagen type X.  Others have reported a dose 

dependent increase in collagen X in ATDC5 cells treated with Pi in the range of 3-30um 
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[23], supporting our finding.  Moreover, our results confirm that the effects of Pi on 

endochondral development were specific and were dependent on active transport of the 

ion because treatment of the cells with the phosphate transporter inhibitor 

phosphonoformic acid blocked the Pi-induced responses.   

 Interestingly, the Pi-induced chondrocytes were sensitive to both 1α,25(OH)2D3 

and 24R,25(OH)2D3 with respect to reduced cell number and increased alkaline 

phosphatase at Pi concentrations below 20 mM, but in cultures treated with 20 mM Pi, 

there was a very specific enhancement of response to the 24R,25(OH)2D3 metabolite of 

vitamin D3.  This was unanticipated since studies using rat [32, 34] and mouse [6] 

costochondral growth plate chondrocytes have shown that resting zone cells are the 

primary target for 24R,25(OH)2D3, whereas prehypertrophic and hypertrophic 

chondrocytes are primary targets for 1α,25(OH)2D3.  Moreover, 20 mM Pi induced 

sensitivity of the ATDC5 cells to 10-7 M 24R,25(OH)2D3, which is the concentration at 

which costochondral resting zone cells exhibit maximal responses to the seco-steroid [6] 

and similar to the level of endogenous 24R,25(OH)2D3 produced by these cells when 

stimulated in culture [35].  

 These observations suggest that 24R,25(OH)2D3 may serve to protect the early 

endochondral chondrocytes from premature terminal differentiation due to high levels of 

exogenous Pi.  Our results support this hypothesis.  24R,25(OH)2D3 blocked the 

inhibitory effect of Pi on [35S]-sulfate incorporation.  Moreover, it blocked the 

stimulatory effects of Pi on apoptosis, based on two different indicators of cell death.  

24R,25(OH)2D3 increased DNA synthesis, reduced DNA fragmentation, and reduced 

caspase-3 activity in Pi-treated ATDC5 cells.   
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 The fact that the effects of Pi treatment on sensitivity to 24R,25(OH)2D3 were so 

narrowly focused in terms of dose may indicate that one or more critical conditions must 

be met with precision to invoke the need for response to the steroid during endochondral 

ossification in the embryo.  The spatial and temporal sequence of events in embryonic 

bone formation differs from post-fetal bone growth.  Thus, Pi and 24R,25(OH)2D3 may 

act together to reduce proliferation and begin the process of hypertrophy, but as alkaline 

phosphatase increases generating higher levels of exogenous Pi, 24R,25(OH)2D3 acts as a 

brake on the apoptotic process induced by the active uptake of Pi.   

 In summary, our study demonstrates the value of the ATDC5 prechondrocyte 

model for studying factors that modulate endochondral ossification, as noted by others 

[19, 24, 36].  Our results confirm the importance of exogenous Pi in regulating the 

differentiation and maturation of chondrocytes in endochondral development.  Most 

importantly, they show that Pi treatment induces sensitivity to vitamin D metabolites 

24R,25(OH)2D3 and 1α,25(OH)2D3 in a dose-dependent manner and at the higher 

concentrations of Pi, the cells become specifically responsive to 24R,25(OH)2D3.  This 

metabolite acts with Pi to reduce cell number and increase endochondral differentiation, 

but at the same time it blocks the activation of apoptosis, suggesting a role for modulating 

the rate of terminal differentiation in embryonic bone formation. 
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CHAPTER 4. FLUID SHEAR STRESS INHIBITS DIFFERENTIATION OF 

GROWTH PLATE RESTING ZONE CHONDROCYTES AND 

CHONDROGENIC ATDC5 CELLS 

 

INTRODUCTION  

Many cell types have been shown to be responsive to mechanical stimuli, and for 

some types of cells including chondrocytes, mechanical environment may be an 

important parameter for homeostatic function [1].  Numerous studies have considered the 

effect of shear stress on mature normal [2] or arthritic [3, 4] chondrocytes located in 

tissues around the joints, such as articular cartilage [5, 6] or meniscal fibro-cartilage [7, 

8].  Cartilage is a highly hydrated tissue that experiences the movement of fluid when 

compression is applied to the tissue, resulting in potential fluid shear stress at or near the 

cellular membrane [9].  Studies of tissue engineered cartilage show that changes in fluid 

shear stress in a bioreactor can modulate the growth and differentiation of the cells and 

that effects change as the cells produce extracellular matrix [10-12].  Articular 

chondrocytes in arthritic tissues experience increased shear stress due to loss of the 

protective integrity of the surrounding matrix.  The cells respond to increased shear by 

escalating activity that can advance arthritis such as decreased matrix production [2] and 

cell proliferation [13] and increased apoptosis [3, 14].   

Some evidence suggests that mechanical loading may begin to play a role in joint 

formation as early as during fetal development, such as in the temporal-mandibular joint 

[15, 16] and hip [17].  Less is known about the effects of fluid shear on chondrocytes in 

the growth plate.  The mammalian growth plate is a remaining center of endochondral 
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ossification that persists after embryonic development of the long bones.  How growth 

plate chondrocytes experience shear throughout the course of endochondral ossification is 

not well understood.  Moreover, it may change markedly with the state of chondrocyte 

maturation within the growth plate. 

The purpose of the present study was to determine how changes in fluid shear 

force modulate the behavior of chondrocytes in the growth plate.  The chondrocyte 

phenotype is staged through endochondral ossification in both a temporal and spatial 

manner.  Not only do the cells show changes in shape and size, but they also vary in their 

extracellular matrix composition and in their responses to local and systemic factors [18-

20].  To limit the potential variables in the present study, we focused on chondrocytes in 

the resting zone of the growth plate, which is characterized by sulfated proteoglycan-rich, 

type II collagen extracellular matrix.  We used two models: primary rat resting zone 

chondrocytes and also the chondrogenic embryonic murine ATDC5 cell line.  Numerous 

studies have shown that the rat resting zone cells retain phenotypic properties of resting 

zone cells in vivo, including synthesis of type II collagen but not type X, zone specific 

responses to vitamin D metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3, and low matrix 

metalloproteinase activity [18, 21].  The ATDC5 cells were cultured using a method we 

have previously developed to induce similar phenotypic characteristics to resting zone 

chondrocytes [22]. 
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METHODS AND MATERIALS 

Cell Culture 

 Primary resting zone (RC) chondrocytes were obtained following a procedure 

previously shown to retain phenotypic properties of the cells during in vitro expansion up 

to fourth passage [23].  Briefly, chondrocytes from the resting zone (reserve zone) of the 

costochondral junction of 125-g male Sprague Dawley rats were cultured in DMEM 

containing 10% fetal bovine serum (FBS) (Hyclone, Logan, UT) and 50 µg/ml ascorbic 

acid in an atmosphere of 5% CO2 and 100% humidity at 37 ˚C.  At fourth passage, RC 

cells were plated at a seeding density of 10,000 cells/cm2 and received shear stress 

treatment at confluence (typically after 5-7 days of culture).   

ATDC5 cells were also plated at 10,000 cells/cm2 and cultured in maintenance 

medium consisting of a 1:1 ratio of DMEM/F12 media (Cellgro, Manassas, VA) 

containing 5% FBS, and 10 µg/ml human transferrin (Sigma Chemical Company, St. 

Louis, MO), 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA), and 3 x 10-8 M 

sodium selenite (Sigma).  After reaching confluence (typically after 5 days) cells were 

cultured with differentiation media, which is identical to maintenance media with the 

addition of 10 µg/ml bovine insulin (Sigma) and 50 µg/ml ascorbic acid [24, 25].  At 10 

days post-confluence, cells were cultured for 24 hours in differentiation media 

supplemented with 20 mM phosphate (Pi) beyond media basal level and 10% FBS to 

induce a resting-zone-like phenotype in the ATDC5 cells.  This method was previously 

shown to induce a comparable phenotype to resting chondrocytes based on chondrocytic 

differentiation and sensitivity to 24,25(OH)2D3 [22].  ATDC5 cells were returned to 

normal differentiation media and received shear stress treatment on Day 11.   
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Application of Shear Stress 

Shear stress was applied to the cells via a unidirectional cone-plate viscometer 

device modeled after the design used by Dr. Hanjoong Jo (Emory University, Atlanta, 

GA) [26-28] and is similar to other previously reported designs [29-31].  The device was 

operated at a low Reynolds number (Re < 1), which allows for shear stress τ to be 

estimated by the equation τ = µω/α, where µ is viscosity of the media, ω is the angular 

velocity of the cone, and α is the angle of the cone to the culture surface.  Cultures were 

exposed to estimated shear forces ranging from 2 - 6.5 dynes/cm2.  A static control set of 

cultures was included in each experiment.  All cells were cultured in 100 mm x 20 mm 

Petri dishes (BD Falcon, Franklin Lakes, NJ) to accommodate the size of the cone-plate 

device, and were cultured in a volume of 10 mls of media, including during shear 

exposure.  Eight cone-plate devices were available thus allowing 8 simultaneously 

sheared samples in a single experiment.  Shear exposure was for 24 hours for all data 

shown.  Following shear stress application, cells were either harvested for assay 

immediately or were given fresh media and allowed up to 24 hours before harvesting.   

Cell Number and Viability 

 At harvest, cells were washed twice with DMEM and trypsinized (Invitrogen) for 

10 minutes.  Cells were resuspended in saline, and counted on a Beckman Coulter Z1 

Particle Counter (Beckman Coulter, Fullerton, CA).  To determine if a decrease in cell 

number was due to cell detachment caused by shear, cell number was also measured 

immediately following shear in both static control and sheared samples.  Both the 

adherent cell monolayer and cells suspended in the media at the end of shearing were 

collected and analyzed separately for cell number.  To determine if shearing had caused 
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cell death in the treated cultures of primary RC cells a two-color fluorescent stain was 

performed using the Molecular Probes LIVE/DEAD Viability/Cytotoxicity Assay Kit 

(Invitrogen).  The ATDC5 cultures as used when grown past confluence were too dense 

to be very appropriate for the use of this kit. 

Alkaline Phosphatase Activity 

 Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, alkaline]-

specific activity was used as an indication of chondrocyte differentiation. Cells were 

harvested at 24 hours after shear and suspended in 0.05% Triton X-100.  After three rapid 

freeze-thaw cycles to lyse the cells, enzyme activity was measured in cell lysates and 

normalized by protein content determined by using the Macro BCA Protein Assay Kit 

(Pierce, Rockford, IL).   

DNA Synthesis 

The effect of shear stress on DNA synthesis in resting zone chondrocytes was 

determined by measuring [3H]-thymidine (Perkin Elmer, Waltham, MA) incorporation 

into trichloroacetic acid (TCA, Sigma) insoluble cell precipitates as previously described 

[32].  When resting zone chondrocyte cultures were approximately 70% confluent, they 

received starvation media with only 1% FBS for 48 hours to synchronize the cells, after 

which they received 24 hours of shear stress.  Samples were then assayed for [3H]-

thymidine incorporation either immediately following shear or at 24 hours later.  Cell 

cultures received a 2-hour pulse of [3H]-thymidine either immediately after shear or at 22 

hours after shear, respectively.  Radioactivity in TCA-precipitable material was measured 

by liquid scintillation spectroscopy.  [3H]-Thymidine incorporation was not measured in 
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ATDC5 cells, because the culture method for them was not compatible with the pre-

confluent starvation method used in this assay. 

 [35S]-Sulfate Incorporation 

 To determine the role of shear stress in modulating extracellular matrix 

composition, [35S]-sulfate incorporation was measured as an indicator of sulfated 

glycosaminoglycan production as described previously [33, 34].  Four hours prior to 

harvest, [35S]-sulfate (Perkin Elmer, Waltham, MA) was added to the cultures.  For 

samples cultured under static conditions for 24 hours after shear, [35S]-sulfate was pulsed 

into the media at hour 20 after shear.  To determine [35S]-sulfate incorporation directly 

following shear, the [35S]-sulfate pulse was applied to the cells immediately following the 

end of shear for 4 hours.  Cell layers were collected and dialyzed to remove any unbound 

[35S]-sulfate.  Radiolabeled [35S]-sulfate incorporated into the cell layer was expressed as 

disintegrations per minute normalized to protein levels for each sample.    

mRNA Analysis with Quantitative Real-Time PCR 

Extraction of mRNA was performed using a TRIzol reagent kit (Invitrogen) and 

was quantified using the Nanodrop-1000 Spectrophotometer (Thermo Scientific, 

Waltham, MA).  Reverse transcriptase was performed using the RT Omniscript Kit 

(Qiagen, Valencia, CA) and random primers (Promega, Madison, WI) to generate a 

cDNA library of each sample.   

Real-time PCR was performed to quantify the effects of shear on expression of 

aggrecan, collagen type II, and cartilage oligomeric matrix protein (COMP).  mRNA was 

isolated from both RC cells and ATDC5 cells at the end of 24 hours of shear (6.5 

dynes/cm2) and also 12 hours following the end of shear after returning to static culture.  
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The primer sequences used for the murine ATDC5 cells were as follows: aggrecan, 5’-

GGT CTG TGC CAT CTG TGA GG-3’ (sense) and 5’-CCC AGT CCA GCC GAG 

AAA TG-3’ (anti-sense); collagen type II, 5’-TGG AGC AGC AAG AGC AAG G-3’ 

(sense) and 5’-GTG GAC AGT AGA CGG AGG AAA G-3’ (anti-sense); COMP, 5’-

AAT ACG GTC ATG GAA TGT GAT G-3’ (sense) and 5’-TCT CGG AGC AGA CTA 

CGC-3’ (anti-sense); and GAPDH, 5’-TTC AAC GGC ACA GTC AAG G-3’ (sense) 

and 5’-TCT CGC TCC TGG AAG ATG G-3’ (anti-sense).  The primer sequences used 

for rat RC cells were as follows: GAPDH, 5’-AAG TTC AAC GGC ACA GTC AAG G-

3’ (sense) and 5’-CAT ACT CAG CAC CAG CAT CAC C-3’ (anti-sense); aggrecan, 5’-

AGG TGT CAC TTC CCA ACT ATC C-3’ (sense) and 5’-GCT TCG CTG TCC TCA 

ATG C-3’ (anti-sense); and sequences for the collagen type II and COMP primers 

(Qiagen, Valencia, CA) remain undisclosed by the company.     

Statistical Analysis 

 The cone-plate device accommodates 8 simultaneously sheared samples in a 

single experiment and thus experiments generally had sample size of n = 8 per shear 

group and also n = 8 for static control.  Single independent experiments were analyzed 

with Student’s T-test between shear and static control.  Treatment-to-control ratios (fold 

change) were calculated for individual experiments and multiple fold changes from 

replicate experiments using equivalent conditions were tested with a one sample t-test to 

compare to a hypothetical mean of 1.   All comparison of fold change across multiple 

experiments at different shear levels were analyzed with ANOVA followed by 

Bonferroni’s modification of Student’s T-test.  Differences were considered to be 

statistically significant if the P value was less than 0.05.   
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RESULTS 

Resting zone cells exhibited a decrease in cell number 24 hours following 

termination of shear compared to cells cultured under constant static conditions, and this 

decrease was comparable at all levels of shear stress tested (Figure 4.1A).  ATDC5 cell 

number was also reduced in cultures exposed to shear stress, but this was significant only 

in cultures exposed to 6.5 dynes/cm2 (Figure 4.1B),  

Alkaline phosphatase specific activity in the cell lysates was decreased in 

response to increasing shear.  Statistically significant decreases were observed in RC 

cells at 6.5 dynes/cm2 compared to static control cultures as well as to cultures only 

receiving 2 dynes/cm2 (Figure 4.1C).  The effects of shear on alkaline phosphatase 

activity in ATDC5 cells were dose-dependent, with decreased activity in cultures exposed 

to shear stress greater than 3.5 dynes/cm2 compared to static control cultures and activity 

in cultures treated with 5 or more dynes/cm2 compared to cultures exposed to 2 

dynes/cm2 (Figure 4.1D).   

Reductions in cell number following shear were not due to cell detachment.  

There were no differences in the number of cells in the sheared monolayer compared to 

the static monolayer for either cell type (Figure 4.2A).  Furthermore, the number of cells 

suspended in the media was less than 1% of the number of cells in the monolayer for both 

cell types.  Primary RC cells exposed to 24 hours of shear stress were also stained for a 

live/dead assessment at the very end of shear treatment and showed overwhelming 

positive staining as viable (Figure 4.2B).      

The reduction in cell number was due in part to reduced DNA synthesis.  At 

cessation of shear stress, there was a reduction in [3H]-thymidine incorporation in all RC 
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cell cultures exposed to shear (Figure 4.3).  These effects were not dose-dependent.  

However, following the 24 hour recovery period, DNA synthesis was restored to control 

levels in nearly all shear-treated groups, except for 3.5 dynes/cm2.   

Exposure to shear stress caused a dose-dependent decrease in [35S]-sulfate 

incorporation in RC cell cultures (Figure 4.4).  In cultures exposed to 5 and 6.5 

dynes/cm2, there was a 50% decrease in incorporation.  However, by 24 hours after shear 

stress, [35S]-sulfate incorporation was restored to static control levels in cultures exposed 

to 2 dynes/cm2 and the decrease noted in cultures exposed to 5 dynes/cm2 was reduced.  

Only at the highest level of shear stress was incorporation of radiolabel still decreased by 

50%.  ATDC5 cells were affected in a similar manner, but the effects of shear stress at 

termination of shear were greater (Figure 4.5). 

Shear stress differentially affected mRNA levels for cartilage extracellular matrix 

proteins (Figure 4.6).  Aggrecan mRNAs were reduced during shear in both RC and 

ATDC5 cells.  In contrast, levels of collagen type II mRNA and COMP mRNA were not 

altered at the cessation of shear in either cell type.  However, collagen type II mRNAs 

were reduced at 12 hours of recovery in both RC and ATDC5 cells whereas only the 

ATDC5 cells exhibited a decrease in mRNAs for COMP. 
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Figure 4.1.  Shear stress dose-dependently reduces cell number and alkaline phosphatase 
activity in resting zone chondrocytes and ATDC5 cells.  All bar graphs represent average 
treatment/control ratios of three independent experiments of cells receiving shear stress 
treatment (2 - 6.5 dynes/cm2) for 24 hours followed by another 24 hours of static culture 
before harvest.  (A) Resting zone chondrocyte (RC) cell number.  (B) ATDC5 cell 
number.  (C) RC alkaline phosphatase specific activity.  (D) ATDC5 alkaline 
phosphatase specific activity.  # P < 0.05 vs. hypothetical mean of 1 (or no change from 
static control within each level of shear treatment), * P < 0.05 vs. 2 dynes/cm2.     
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Figure 4.2. Cells remain adherent and viable during highest shear treatment.  (A) RC and 
ATDC5 cells were sheared for 24 hours at 6.5 dynes/cm2 and then harvested immediately 
for cell number, with results shown in table.  Adherent cells (monolayer) were measured 
separately from detached cells (media) suspended in the culture media for both sheared 
samples and static controls.  Mean (AVG) and standard error (SE) are shown.  No 
statistically significant differences were observed between groups, and number of cells 
detached in media was negligible compared to adherent cells.  (B) Primary RC cells were 
sheared for 24 hours at 6.5 dynes/cm2 and then harvested immediately for live (green) or 
dead (red) staining.  The adherent cells were overwhelmingly shown as viable with very 
few dead cells observed (example of dead cell shown with arrow at higher 
magnification). 
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Figure 4.3. [3H]-Thymidine incorporation of resting zone chondrocytes is inhibited 
during fluid shear stress and recovers after shear.  [3H]-Thymidine incorporation by RC 
chondrocyte cell layers treated for 24 hours with 2 - 6.5 dynes/cm2 shear stress or under 
static control conditions.  Incorporated label was measured immediately following shear 
stress (top row) or 24 hours after shear stress (bottom row). Data presented are from a 
single representative experiment, all with comparable results.  Values shown are means + 
SEM for N = 8 static cultures and N = 8 treated cultures for each shear condition. * P < 
0.05 vs. Static Control. 
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Figure 4.4. Fluid shear stress reduces [35S]-sulfate incorporation of resting zone 
chondrocytes (RC) and dose-dependently affects post-shear recovery rate.  [35S]-Sulfate 
incorporation into RC chondrocyte cell layers treated for 24 hours with 2 - 6.5 dynes/cm2 
shear stress or under static control conditions.  Incorporated label was measured 
immediately following shear stress (top row) or 24 hours after shear stress (bottom row). 
Data presented are from a single representative experiment, all with comparable results.  
Values shown are means + SEM for N = 8 static cultures and N = 8 treated cultures for 
each shear condition. * P < 0.05 vs. Static Control. 
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Figure 4.5. Fluid shear stress reduces [35S]-sulfate incorporation of ATDC5 cells and 
dose-dependently affects post-shear recovery rate.  [35S]-Sulfate incorporation into RC 
chondrocyte cell layers treated for 24 hours with 2 - 6.5 dynes/cm2 shear stress or under 
static control conditions.  Incorporated label was measured immediately following shear 
stress (top row) or 24 hours after shear stress (bottom row). Data presented are from a 
single representative experiment, all with comparable results.  Values shown are means + 
SEM for N = 8 static cultures and N = 8 treated cultures for each shear condition. * P < 
0.05 vs. Static Control. 
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Figure 4.6. Fluid shear stress regulates mRNA of chondrocytic markers.  RC cells 
(columns 1 and 2) or ATDC5 cells (columns 3 and 4) were sheared for 24 hours at 0 
(static control) or 6.5 dynes/cm2 and then either harvested immediately (shear + 0 hr, 
columns 1 and 3) for RNA extraction or allowed 12 additional hours of static culture 
before harvest (shear + 12 hr, columns 2 and 4).  Real-time PCR was used to analyze 
quantitative expression of mRNA for aggrecan (AGG, top row), collagen type II (COL2, 
middle row), and cartilage oligomeric matrix protein (COMP, bottom row).  * P < 0.05 
vs. static control. 
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DISCUSSION 

Our results demonstrate that growth plate chondrocytes are sensitive to fluid shear 

stress.  They respond to stress with reduced proliferation and differentiation and changes 

in extracellular matrix synthesis.  Moreover, the concurrence of observations using 

primary rat resting zone cells and murine ATDC5 cells supports the conclusion that the 

murine model accurately reflects the behavior of RC cells in culture and supports the 

hypothesis that our observations indicate a general property of growth plate chondrocytes 

in vivo. 

The decrease in cell number noted in cultures exposed to 6.5 dynes/cm2 shear 

stress was not due to cell detachment by mechanical force.  All cultures were observed 

for significant cell detachment following shear.  On the occasion that a culture showed 

obvious loss of cell layer due to an abnormal disturbance during shear, then that culture 

was discarded.  Furthermore, the dramatic decrease in [3H]-thymidine incorporation seen 

at the end of 24 hours of shear stress in resting zone chondrocytes indicates that fluid 

shear almost completely ablates proliferation of the cells. While, most cultures returned 

to baseline [3H]-thymidine incorporation by 24 hours in static conditions after shear, it is 

possible that proliferation rates were not restored until almost the end of that recovery 

time.  This may explain why in one experiment, DNA synthesis was still reduced at 24 

hours following shear.  Cessation of proliferation at some point after the start of shear 

exposure along with a slow recovery to normal levels may contribute substantially to the 

drop in cell number observed at 24 hours of post-shear static culture.   

It is not known from these experiments whether apoptosis was induced by shear 

in the cell cultures.  Studies have reported that shear can induce apoptosis in 
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chondrocytes via the production of nitric oxide (NO) [3], so it is possible that apoptosis 

also contributed to the shear-induced reduction in cell number.  The higher levels of 

primary cells staining positive for viability following shear suggests that cells have not 

undergone significant apoptosis at the end of shear; however, the ultimate onset of 

apoptosis may occur during the static period following treatment in sheared groups still 

contributing to decreased cell number by 24 static hours after shear.  This may contribute 

to the decrease in collagen type II and COMP mRNA at 12 hours after shear.  Future 

work should more fully characterize the timing and severity of the onset of any apoptosis 

induced by the shear.   

Our results show that fluid shear stress reduced differentiation of the cells with 

respect to alkaline phosphatase specific activity.  Alkaline phosphatase is indicative of 

differentiation state for both chondrocytes [20, 35] and osteoblasts [36].  Alkaline 

phosphatase activity has not previously been reported as sensitive to fluid shear stress in 

resting zone chondrocytes, although it was shown to be decreased by cyclical strain in 

hypertrophic growth plate chondrocytes [37].  Shear stress has been shown to both 

increase or decrease alkaline phosphatase activity in osteoblasts, depending on magnitude 

of shear stress, time of exposure, and even the roughness of the cell substrate surface [38-

40].  Thus fluid shear stress effects on alkaline phosphatase activity may vary by cell 

type, as well as by duration and dose of shear and the extracellular environments.  

ATDC5 cells were more sensitive to shear stress than the RC cells, which may reflect 

species differences, differences in maturation state, or differences in culture conditions.  

Overall, the response to shear was similar in the two cell types, suggesting that reduced 

alkaline phosphatase activity may be a general property of growth plate chondrocytes.   
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 Shear stress affected extracellular matrix production by RC and ATDC5 

chondrocytes.  We assess the effects on proteoglycan by measuring mRNA levels for 

aggrecan, which is the core protein of cartilage proteoglycan, and by measuring [35S]-

sulfate incorporation as an indicator of glycosaminoglycan sulfation.  Both parameters 

were reduced by shear and this decrease was reduced during recovery, supporting the 

conclusion that RC cells and ATDC5 cells produce less cartilage matrix during exposure 

but once shear stress ceases, production of core protein and sulfation of associated 

glycosaminoglycans resumes.  The observed decrease in [35S]-sulfate incorporation may 

be due to decreased production of proteoglycan molecules, either due to reduced 

aggrecan expression as suggested by the reduction in aggrecan mRNA, or to decreased 

sulfation of existing glycosaminoglycans, but increased breakdown of proteoglycans may 

have played a role as well.  It has been reported that mechanical stimuli can alter the 

expression of aggrecanases [41, 42], which can break down proteoglycan molecules and 

thus decrease the net amount of sulfate that would be incorporated into the cell layer if 

degradation rates were outpacing production rates.  The effect of shear on aggrecanase 

production or activity has not yet been studied in our system.   

 Shear also affected the mRNA levels of other important matrix molecules.  Our 

results suggest that exposure to shear initiated a reduction in collagen type II and COMP 

expression.  COMP provides a three dimensional network throughout the cartilage 

extracellular matrix that can serve to organize and stabilize the collagen/proteoglycan 

aggregate composite hydrogel [43-45].  COMP has also been shown to be upregulated in 

articular chondrocytes by cyclic compression [46] and cyclic tension [47], indicating that 

this matrix molecule likely has an important role in responding to mechanical 
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stimulation.  However, our results suggest that COMP may be regulated differently by 

laminar fluid shear stress, resulting in decreased expression. 

Overall, our data suggest that growth plate chondrocytes reduce or delay their 

proliferation and differentiation under the shear stress culture conditions we studied.  

However, given that cells showed recovery towards control levels of [3H]-thymidine 

incorporation and [35S]-sulfate incorporation by 24 hours after shear suggest that the cells 

may eventually recover from inhibitory shear effects.  Yokota et al. showed short 

exposure times (1 hour) at 5 dynes/cm2 fluid flow were beneficial to a chondrocytic cell 

line whereas destructive responses were upregulated at 20 dynes/cm2 [48].  The cells 

studied in our system were unresponsive to short periods of shear stress (2 hours, data not 

shown), and only showed inhibitory responses over the range of shear stresses applied at 

24 hours of shear exposure, suggesting not all chondrocytes respond equally to the same 

stimuli or on the same time scale.     

It is not well understood what shear stresses growth plate chondrocytes are 

exposed to in vivo and how they may differ from stresses in other cartilaginous tissue 

such as in articular cartilage or the nucleus pulposus of the intervertebral disc.  The 

differences in matrix composition associated with endochondral development and the 

corrugated anatomy of the growth plate also make it difficult to model this important 

parameter.  It has been reported that compressive forces can suppress longitudinal bone 

growth in rats, suggesting that growth plates are inhibited by this form of mechanical 

stimulation [49].  Moreover, recently characterized mineral tethers that can span the 

length of the growth plate [50] may serve to minimize the compression and loading that 

is experienced in this cartilage as compared to articular cartilage.   
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The consistent patterns observed in the ATDC5 cells as compared to primary rat 

resting zone chondrocytes indicate that ATDC5 cells are potentially a good model to 

study this cell type under mechanical loading in addition to its value in assessing growth 

plate chondrocyte response to biochemical regulation [51, 52].  The present study shows 

that growth plate chondrocytes can sense fluid shear; future studies can use these models 

to examine the underlying mechanisms involved. 
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CHAPTER 5. INTEGRIN BETA 1 EXPRESSION PARTIALLY AFFECTS 

CHONDROCYTE REPONSE TO SHEAR STRESS 

 

INTRODUCTION 

Chondrocytes have shown that mechanical stimulation can be a significantly 

important parameter to their homeostasis and can result in either anabolic [1] or catabolic 

[2] effects on the extracellular matrix.  A better understanding of the effects of 

mechanical stimulation on chondrocytes can offer potential advancements to many areas 

of study including cartilage tissue engineering via bioreactor technology [1, 3], 

endochondral development [4], fracture healing [5, 6], and the potentially divergent 

mechanotransduction pathways in normal versus osteoarthritic cartilage [7, 8].   

 In particular, fluid shear stress is one type of mechanical stimulation that has been 

shown to affect chondrocytes [1, 2, 9].  This may involve a number of potential 

mechanisms including changes in membrane potential, solute transport, or cellular 

deformation [10].  Integrin related stretch ion channels may also be involved [11], and 

integrins have been shown to potentially mediate many effects of mechanotransduction 

[12, 13].  Our previous work has shown that fluid shear stress is inhibitory on growth 

plate chondrocyte differentiation (see Chapter 4).  While integrin Beta 1 blocking with 

antibodies or RGD peptides has been shown to prevent both mechanically stimulated 

increases [12, 14] and decreases [8] in cartilage matrix markers, it is not known if 

reduction of actual expression of integrin beta 1 itself can prevent the inhibition of 

differentiation previously observed by fluid shear in our system.  Furthermore, 

conditional knock-out studies have shown that absence of integrin beta 1 in vivo results 
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in disorganized growth plate development in mouse embryos [15], suggesting a vital role 

of integrin beta 1 in growth plate orientation and differentiation.  The objective of this 

study was to determine if shear regulates integrin mRNA expression in growth plate 

chondrocytes, and if silenced expression of a shear-regulated integrin could alter the 

corresponding effects of shear in chondrocytes.      

 

METHODS AND MATERIALS  

Cell Culture 

Primary resting zone (RC) chondrocytes were obtained as previously described 

[16].  Briefly, chondrocytes from the resting zone (reserve zone) of the costochondral 

junction of 125-g male Sprague Dawley rats were cultured in DMEM containing 10% 

fetal bovine serum (FBS) (Hyclone, Logan, UT) and 50 µg/ml ascorbic acid in an 

atmosphere of 5% CO2 and 100% humidity at 37 ˚C.  Confluent cultures of fourth 

passage cells were used for the experiments described below.   

ATDC5 cells were cultured in a maintenance medium consisting of a 1:1 ratio of 

DMEM/F12 media (Cellgro, Manassas, VA) containing 5% FBS, and 10 µg/ml human 

transferrin (Sigma Chemical Company, St. Louis, MO), 1% penicillin-streptomycin 

(Invitrogen, Carlsbad, CA), and 3 x 10-8 M sodium selenite (Sigma).  After reaching 

confluence cells were cultured with differentiation media, which is identical to 

maintenance media with the addition of 10 µg/ml bovine insulin (Sigma) and 50 µg/ml 

ascorbic acid [17, 18].  At 10 days post-confluence, cells were cultured for 24 hours in 

differentiation media supplemented with 20 mM phosphate (Pi) beyond media basal level 
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and 10% FBS based on a culture method previously shown by us to induce phenotypic 

similarity to resting zone chondrocytes in this cell line [19].   

Application of Shear Stress 

Shear stress was applied to the cells via a unidirectional cone-plate viscometer 

device as in previous experiments.  Cultures were mostly exposed to a shear force of 6.5 

dynes/cm2 or in a few cases to 3.5 dynes/cm2.  A static control set of cultures was 

included in each experiment.  Fourth passage RC cells were sheared at confluence and 

ATDC5 cells were sheared on day 11 post-confluence.  Shear stress was applied for 24 

hours for both cell types.  Cells were cultured in 100mm x 20mm Petri dishes (BD 

Falcon, Franklin Lakes, NJ).  Following shear stress application, cells were either 

harvested for assay immediately or were given fresh media and allowed up to 24 hours 

before harvesting.   

Western Blot 

Whole cell lysates were isolated by using RIPA lysis buffer (20mM Tris-HCL, 

150mM NaCl, 5mM disodium EDTA, ddH2O, Nonidet P-40) with homogenization in 

Wheaton glass tissue homogenizers and sonication, followed by the addition of Laemmli 

sample buffer containing 0.5% 2-mercaptoethanol and boiling for 5 minutes.  Samples 

were separated by gel electrophoresis on 4-20% LongLife Mini Gels (NuSep, 

Lawrenceville, GA) and transferred to a nitrocellulose membrane using the iBlot™ Gel 

Transfer Device (Invitrogen, Carlsbad, CA).  The membranes were blocked with 2% 

bovine serum albumin for one hour at room temperature.  After removing the blocking 

solution, the membrane was rocked at 4ºC in 1° antibody overnight for Integrin β1 (Santa 

Cruz, Santa Cruz, CA) or GAPDH, (Millipore, Billerica, MA).  The 1° antibody was 
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discarded and the membrane was washed in buffer three times for a total of 30 minutes.  

Then the correct HRP-conjugated 2° antibody (Jackson ImmunoResearch, West Grove, 

PA, or BioRad) was added to the membrane which rocked for one hour at room 

temperature, then washed again in buffer as before. Chemiluminescent bands were 

visualized using the Quantity One Versadoc software (BioRad) for Windows. 

Silencing ATDC5 Integrin Beta 1 mRNA 

To silence integrin β1 mRNA, ATDC5 cells were plated at 30,000 cells/cm2 to 

achieve 70 percent confluence at 24 hours.  The cells were then incubated using 

Mission® lentiviral particles (Sigma Aldrich, St Louis, MO) at a multiplicity of infection 

(MOI) of 7.5.  After 18 hours, the media was changed to maintenance media for ATDC5 

cells for 24 hours.  Thereafter cells were then selected with 2.25µg/mL puromycin 

(Sigma Aldrich) in the maintenance media as successful incorporation of the plasmid 

should induce puromycin resistance.  Silencing was verified using real-time PCR and 

Western Blot. 

Cell Number 

 At harvest, cells were washed twice with DMEM and trypsinized (Invitrogen) for 

10 minutes.  Cells were resuspended in saline, and counted on a Beckman Coulter Z1 

particle counter.   

Alkaline Phosphatase Activity 

  Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, alkaline]-

specific activity was used as an indication of chondrocyte differentiation. Cells were 

harvested at 24 hours after shear by suspension in 0.05% Triton X-100.  After three 

freeze-thaw cycles to lyse the cells, enzyme activity was measured in cell lysates and 
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normalized by protein content determined by using the Macro BCA Protein Assay Kit 

(Pierce, Rockford, IL).   

[35S]-Sulfate Incorporation 

 To determine the role of shear stress in mediating extracellular matrix production, 

proteoglycan synthesis was assessed by measuring [35S]-sulfate incorporation as 

described previously [20, 21].  After shearing, samples were returned to static media 

conditions for 24 hours.  Four hours prior to harvest, [35S]-sulfate (Perkin Elmer, 

Waltham, MA) was added to the cultures.  Cell layers were collected and dialyzed to 

remove any unbound [35S]-sulfate.  Radiolabeled [35S]-sulfate incorporated into the cell 

layer was expressed as disintegration per minute normalized to protein levels for each 

sample.    

mRNA Analysis with Quantitative Real-Time PCR 

mRNA was extracted using the TRIzol Reagent Kit (Invitrogen).  TRIzol was first 

added to the cells, then after standing at room temperature, chloroform was added to each 

sample.  The samples were then centrifuged and upon discarding supernatant, 

isopropanol was added.  After spinning the samples and discarding supernatant again, 

ethanol was added, samples were spun and the pellet was dissolved in DEPC H2O.  The 

RNA was quantified using the Nanodrop-1000 Spectrophotometer (Thermo Scientific, 

Waltham, MA).  The samples were then used to make a cDNA library via reverse 

transcriptase using the RT Omniscript Kit (Qiagen, Valencia, CA) and random primers 

(Promega, Madison, WI).  The samples were denatured at 65°C, then cooled to 4°C at 

which point the master mix (RT Omniscript Kit) was added, then reheated to 37°C.   
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Modulation of integrin mRNA levels by shear stress and lentiviral mRNA 

silencing was measured using quantitative real-time PCR.  Primers were compatible for 

both the RC (rat) and ATDC5 (mouse) cells, and their sequences were: integrin β1, 5’-

ATT ACT CAG ATC CAA CCA C-3’ (sense) and 5’-TCC TCC TCA TTT CAT TCA 

TC-3’ (antisense); integrin β3, 5’-ATA TGC CAC CTG CCT CAA C-3’ (sense) and 5’-

GCT CAC CGT GTC TCC AAT C-3’ (antisense); integrin α2, 5’-ACT GTT CAA GGA 

GGA GAC-3’ (sense) and 5’-GGT CAA AGG CTT GTT TAG G-3’ (antisense); and 

integrin α5, 5’-ATC TGT CTG CCT GAC CTG-3’ (sense) and 5’-AAG TTC CCT GGG 

TGT CTG-3’ (antisense). 

The chondrocytic mRNA regulation by shear stress was quantitatively defined 

using real-time PCR performed on collagen type II, aggrecan, and COMP mRNA 

expression ATDC5 cells at 12 hours after shear.  The primer sequences used were as 

follows: collagen type II, 5’-TGG AGC AGC AAG AGC AAG G-3’ (sense) and 5’-GTG 

GAC AGT AGA CGG AGG AAA G-3’ (anti-sense); aggrecan, 5’-GGT CTG TGC CAT 

CTG TGA GG-3’ (sense) and 5’-CCC AGT CCA GCC GAG AAA TG G-3’ (anti-

sense); COMP, 5’-AAT ACG GTG ATG GAA TGT GAT G- 3’ (sense) and 5’-TCT 

CGG AGC AGA CTA CGC-3’ (anti-sense); and GAPDH, 5’-TTC AAC GGC ACA 

GTC AAG G-3’ (sense) and 5’-TCT CGC TCC TGG AAG ATG G-3’ (anti-sense).   

Statistical Analysis 

All individual shear stress experiments were analyzed with Student’s T-test to 

compare the static control to shear group.  Quantitative experiments with more than two 

groups were analyzed with ANOVA followed by Bonferroni’s modification of Student’s 

T-test.  Differences in means were considered to be statistically significant if the P value 
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was less than 0.05.  The cone-plate devices allow for up to 8 simultaneously sheared 

samples and thus experiments generally have sample size of n = 8 per shear group and 

also n = 8 for static control.  In some cases treatment-to-control ratios from independent 

experiments for wild type (WT) and silenced cells were calculated to compare effects of 

shear dose in populations with altered integrin beta 1 expression. 

 

RESULTS 

Many integrin subunits were significantly upregulated at the end of 24 hours of 

shear stress in ATDC5 cells with comparable trends in primary resting zone 

chondrocytes.  The mRNA expression of integrin subunits alpha 2 and alpha 5 was 

significantly higher in ATDC5 cells at the end of shear, but became comparable to 

control levels by 12 static hours following the end of shear (Figure 5.1).  Resting zone 

chondrocytes exhibited a similar trend although not statistically significant.  Expression 

of integrin beta 1 mRNA was regulated by shear stress consistently in both cell types.  

Levels were significantly higher in both ATDC5 cells and resting zone chondrocytes at 

the end of 24 hours of shear.  In both cell types, however, beta 1 mRNA levels were 

comparable to control by 12 hours following the end of shear stress.  Integrin beta 3 

showed a similar trend upwards at the end of shear, although not significantly different at 

that time or by 12 hours later. 

 As integrin beta 1 mRNA levels exhibited a consistent increase in both cell types 

during shear stress, it was hypothesized that silencing mRNA expression of integrin beta 

1 would alter the response of ATDC5 cells under shear.  To test this hypothesis, a clone 

of ATDC5 cells was established for permanent reduced expression of beta 1 mRNA.  
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Levels of beta 1 mRNA were shown to be significantly reduced in 3 of 5 tested clones 

targeted for silencing with one clone (clone 3) showing the greatest reduction in mRNA 

expression at 23% the expression level of wild type ATDC5 cells (Figure 5.2A).  The 

effects of the lentiviral delivery particles alone or a nonspecific plasmid sequence were 

not shown to alter integrin beta1 mRNA levels.  When assessed for reduction in protein 

expression, clone 3 also showed the greatest reduction in integrin beta 1 protein 

expression at 38% expression level of wild type ATDC5 cells (Figure 5.2B).   Clone 3 

and wild type ATDC5 cells were used in remaining experiments for comparison to 

response to shear stress to determine if integrin beta 1 expression modulates response to 

fluid shear. 

 Cell number, alkaline phosphatase activity, and [35S]-sulfate incorporation were 

all reduced at 24 hours after the end of shear stress (Figure 5.3A-C) as observed 

previously.  ATDC5 cells silenced for integrin beta 1 expression were also comparably 

reduced in cell number and the trend was consistent over multiple experiments (Figure 

5.2A).  Similarly, the reduction of alkaline phosphatase activity (Figure 5.2B) and [35S]-

sulfate incorporation (Figure 5.2C) was not statistically different in integrin beta 1 

silenced ATDC5 cells compared to wild type over multiple experiments.   

 Our previous work showed that mRNA of chondrocytic markers could be down 

regulated by 6.5 dynes/cm2 shear, and it was hypothesized that integrin beta 1 expression 

might mediate these effects.  First, to determine if silencing integrin beta 1 had altered 

baseline expression of the markers of interest mRNA levels were assessed from wild type 

and silenced ATDC5 cells (clone 3) from samples cultured and harvested in parallel.  

Baseline levels of aggrecan and cartilage oligomeric matrix protein were not significantly 
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altered by silencing, but collagen type II mRNA levels were increased in silenced 

ATDC5 cells (Figure 5.4A).     

Shear stress induced a reduction of aggrecan mRNA in both wild type and 

integrin beta 1 silenced ATDC5 cells at 12 hours after shear, however this observation 

was not seen when done at a lower level of shear stress 3.5 dynes/cm2 shear stress (Figure 

5.4B).  Collagen type II in WT cells was reduced at 12 hours after shear at 6.5 dynes/cm2 

comparable to previous findings.  However it was not significantly reduced in silenced 

integrin beta 1 cells, or in either cell type at lower shear (Figure 5.4C).  Similarly, COMP 

mRNA levels were reduced in wild type cells but were not in silenced cells, nor in either 

cell type at lower shear treatment (Figure 5.4D).  Wild type and silenced cultures were 

sheared in independent experiments due to limited sample size in the cone-plate device, 

and baseline fluctuations are observed due to variability between independent 

experiments.  For this reason, absolute value comparisons should only be made between 

shear and static pairs shown together. 
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Figure 5.1.  Shear stress increases mRNA of some integrin subunits during shear. 
ATDC5 cells (first and second columns) or resting zone chondrocytes (RC, third and 
fourth columns) were exposed to 6.5 dynes/cm2 for 24 hours and then harvested 
immediately (Shear + 0 hr) or after 12 hours of static culture following shear treatment 
(Shear + 12 hr).  Real-time PCR was used to assess changes in mRNA levels of integrin 
alpha 2 (first row), alpha 5 (second row), beta 1 (third row), and beta 3 (fourth row) at 
these time points.  * P < 0.05 vs. static control.     
 
 
 
 
 
 
 
 
 
 
 



 87

 
 
Figure 5.2. Verification of silencing of integrin beta 1 in ATDC5 cells.  ATDC5 cells 
were either not transduced (WT), treated with empty viral particles without a plasmid 
(EV), a scrambled sequence plasmid not targeting beta 1 (SC), or one of five plasmids 
introducing a sequence of shRNA targeted for degradation of shRNA (1-5).   (A) Real-
time PCR was performed on parallel cultures with these treatments and were assessed for 
expression levels of integrin beta 1 (ITGB1).  Percentage of WT value is shown in table 
below graph.  * P < 0.05 vs. WT.  (B)  Western blot was performed on cultures also 
grown in parallel with same treatments as in (A) and assessed for intensity of Beta 1 
expression and GAPDH as a control.  Value of the intensity of the beta 1 bands 
(normalized by corresponding GAPDH intensity) is shown below beta 1 bands and lower 
table indicates percentage of WT.   
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Figure 5.3. Integrin beta 1 silencing does not alter shear induced effects on cell 
number, alkaline phosphatase specific activity, or [35S]-sulfate incorporation.  WT 
and beta 1 silenced ATDC5 cells (shβ1, clone 3 from 5.2A and 5.2B) were exposed to 24 
hours of shear stress at 6.5 dynes/cm2 and then allowed to return to static culture for 24 
additional hours and harvested for cell number (A), alkaline phosphatase activity (B), and 
[35S]-sulfate incorporation (C).  An individual experiment of WT and shβ1 are shown 
separately with a graph of average treatment/control ratios over three independent 
experiments shown on far right for each assay.  * P < 0.05 vs. Static Control. 
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Figure 5.4. Silencing beta 1 blocks dose-dependent, shear-induced mRNA reduction 
of collagen type II and COMP.  (A) Baseline mRNA levels of aggrecan (AGG), 
collagen type II (COL2), and cartilage oligomeric matrix protein (COMP) were measured 
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(Figure 5.4 continued) from WT and beta 1 silenced (shβ1) ATDC5 cells cultured in 
parallel to determine if silencing of beta 1 altered baseline levels of these markers of 
interest.   * P < 0.05 vs. WT for each gene.  WT or shβ1 cells were sheared for 24 hours 
at 3.5 dynes/cm2 or 6.5 dynes/cm2 and returned to static culture for 12 hours and then 
harvested for mRNA levels using real-time PCR and measured for AGG (B), COL2 (C), 
and COMP (D).  * P < 0.05 vs. static control for same cell type.   
 
 
  

DISCUSSION 

Our results show that integrin subunits are upregulated by fluid shear stress in our 

system with integrin beta 1 being consistently higher in both primary resting zone 

chondrocytes and the ATDC5 culture model.  This finding together with the consistent 

decrease in chondrocytic mRNA, sulfate incorporation, and alkaline phosphatase activity 

caused by shear suggest that after 24 hours of shear stress the cells reduce metabolic 

maintenance of chondrocytic markers and perhaps reallocate resources towards a 

potential increase in integrin expression.  This may be important as the cells likely need 

more focal adhesion formation under shear stress to remain attached [22]. 

 Silencing of integrin beta 1 did not significantly alter the magnitude of shear-

induced decrease of cell number, alkaline phosphatase activity, or sulfate incorporation.  

This suggests that the mechanisms resulting in these decreases are not dependent on 

integrin beta 1 and likely occur through other pathways or phenomena experienced by the 

cells during shear.   Shear-induced reduction of chondrocytic mRNA in wild type cells 

was dependent on shear level for aggrecan, collagen type II, and COMP as seen by the 

absence of significant reduction at a lower level of shear.  Aggrecan mRNA levels were 

still reduced by high shear in beta 1 silenced cells, suggesting beta 1 is not involved in 

shear-induced reduction of aggrecan.  These results corroborate the similar results of the 
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[35S]-sulfate incorporation data and strongly suggest that fluid shear causes a decrease in 

proteoglycan production that is not mediated by integrin beta 1.   

However, mRNA levels for collagen type II and COMP in sheared silenced cells 

were very similar to static control.  This suggests that lack of beta 1 expression blocks the 

shear-induced reduction of mRNA of these genes observed in WT cells, or that the rates 

of occurrence of these responses is altered such that it was not seen at the time point 

measured.  It may be possible that shear stress induces additional motion and spreading 

of the cellular membrane which may influence the kinetic rates of integrin receptor 

interaction with ligand proteins in the matrix [23].  Interestingly, both collagen type II 

[24] and COMP [25] are capable of ligand binding with integrin beta 1 when paired with 

the appropriate dimeric alpha subunit.  Our baseline comparison of silenced versus wild 

type cells indicate when integrin beta 1 is silenced there is a resulting increase in collagen 

type II mRNA.  This may be caused by a reduction of integrin-associated intracellular 

and autocrine signals [26] that might serve as a negative feedback system [27] to the cell 

to inform when sufficient levels of collagen type II are already present in the matrix.  If 

the cell does not receive these signals, it may result in a net increase in basal expression 

of collagen type II.  If shear stress did increase integrin signaling by increasing kinetic 

receptor interaction, then sheared wild type cells may sense more collagen type II in the 

matrix at a faster rate and decrease levels of mRNA, whereas the silenced cells may not 

correctly sense the levels collagen type II present correctly due to diminished presence of 

receptor and thus the cells would not reduce levels of mRNA during shear.  Future work 

should determine the response to shear at multiple time points to delineate if silencing 
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beta 1 resulted in a truly blocked effect or an alteration of a rate either via acceleration or 

deceleration. 

 Our work confirms that chondrocytes do respond to shear stress dose dependently 

and that shear inhibits markers of differentiation and increases potential for integrin 

expression.  Many of the observed effects of shear stress were not altered by a disruption 

in integrin beta 1 expression, suggesting that integrin beta 1 is not involved in those 

responses.  However, shear induced decrease of the integrin ligands collagen type II and 

COMP may be mediated by interaction with integrin beta 1, and reduction of integrin 

beta 1 expression prevents the shear-induced decrease.    
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CHAPTER 6. CONLUSIONS AND FUTURE PERSPECTIVES 

 

This work has shown new information regarding chemical and mechanical 

modifiers of chondrocyte differentiation, more specifically regarding chondrocytes that 

are at a resting zone stage of differentiation or have gained sensitivity to 24,25(OH)2D3.  

The growth plate provides a spectrum of chondrocytes at uniquely staged phases of 

differentiation.   Understanding the factors that uniquely coordinate cellular activity at 

different stages of endochondral activity can ultimately open up better opportunities for 

cartilage regeneration and treatment of pathologies such as osteoarthritis.   

  

Interactive Coordination of Inorganic Phosphate and 24,25(OH)2D3  

The results from specific aim 1 of this work has provided evidence that inorganic 

phosphate and 24,25(OH)2D3 may have a careful interplay in advancing and resisting 

end-stage differentiation in growth plate chondrocytes.  Building upon this work may 

offer many opportunities for understanding natural regulation of growth plate 

differentiation as well as potentially identifying new targets or pathways for therapeutic 

intervention in cartilage related pathologies such as arthritis.  Our data suggest that 

inorganic phosphate is a cue for advanced differentiation towards mineralization 

competency and hypertrophic apoptosis indicated by the increase in alkaline phosphatase 

activity, collagen X mRNA expression, and markers of apoptosis.  The hormone 

24,25(OH)2D3 showed the capacity to offset apoptosis and induce proliferation and 

restore a Pi-induced decrease in proteoglycan production.   



 97

To better characterize the interplay of Pi and 24,25(OH)2D3 , it would be good to 

test extended time courses of varied interaction with Pi and 24,25(OH)2D3 exposure.  For 

example, cells could be treated for 48-96 hours with Pi before testing if 24,25(OH)2D3 

can rescue them from a more prolonged induction of apoptosis.  Also, cells could be 

treated concurrently with Pi and 24,25 together to see if that blocks initiation of 

apoptosis.  Also, varying lengths of exposure to 24,25 following induction of apoptosis 

would help determine how long a treatment of 24,25 would be needed to potentially act 

as a therapeutic.   

A provisional patent to use 24,25(OH)2D3 as an anti-apoptotic for the treatment of 

osteoarthritis was filed based on the initial findings of our work and also some related 

work by Jennifer Hurst-Kennedy also within our lab.  To further verify if 24,25(OH)2D3 

could serve in this capacity it would be important to test it in experiments directly 

relevant to arthritis.  First, it should be determined if 24,25(OH)2D3 promotes other 

activity that prevents cartilage degradation and/or promotes matrix synthesis.  This would 

involve determining if destructive enzymes are down-regulated such as matrix 

metalloproteinases, and testing if inhibitors of matrix destruction are upregulated such as 

tissue inhibitors of metalloproteinases (TIMPs).  Further work could be done to quantify 

how much matrix protein production is induced or recovered in normal and stressed 

conditions (such as induced apoptosis).  The effect of 24,25 on mineralization of cells 

could also be of interest, although well characterized models of mineralization would 

need to be established.   

To be more pertinent to arthritis therapy development, studies involving articular 

cartilage (cells or organ culture) should be performed, including human derived sources 
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as well.  Also, in vivo animal studies would need to be performed in an appropriate 

animal model(s) to test for reduction or recovery from induced osteoarthritis.  Endpoints 

might include histology evaluation following treatment with recovery time, as well as 

measurements of reduction in pain assessed by willingness to bear more weight on 

effected limbs.  Also, if 24,25(OH)2D3 were to be injected in combination with other 

arthritis treatments such as hyaluronic acid, it should be tested how the metabolite reacts 

in the presence of HA and what else may or may not be appropriate as part of the delivery 

vehicle.  It should also be tested what levels of 24,25(OH)2D3 are found in synovial fluid 

of both normal and arthritic articular joints in animal models (and in humans if possible).  

It may be necessary to also characterize how well 24,25(OH)2D3  would remain within 

the joint space if injected locally, how much would leak into the blood stream and any 

effects of this, and finally how well the hormone would diffuse into chondrocytes at 

different depths within the articular cartilage tissue.  It is probably less likely that 

24,25(OH)2D3 would remedy the causes of rheumatoid arthritis as it involves a strong 

autoimmune component, however, this should be tested for any efficacy if osteoarthritis 

treatment appears to be successful. 

 

Characterization of Shear Stress on Growth Plate Chondrocytes 

Initially, it was suspected that shear stress may be a parameter that could promote 

increased differentiation of growth plate chondrocytes through the stages of endochondral 

ossification.  However, over the range of shear stress we studied and over the time points 

which were assessed it appears that fluid shear stress dose dependently inhibits or delays 
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cellular differentiation and proliferation.  It may be possible that different levels or time 

of shear exposure may indicate an increase in differentiation.  Furthermore, additional 

time points of assessment should be included to determine how quickly the cells begin 

responding to shear stress, as well as how long after cessation of shear are cells still 

exhibiting some alteration caused by this treatment.   

It would be beneficial to determine more information about protein level changes 

at the matrix.  Perhaps quantitative histology or ELISA of sheared cultures could be 

performed to determine if expression of collagen type II, type I, and COMP had changed.  

It should be assessed if catabolic enzymes that degrade the integrity of matrix proteins 

such as matrix metalloproteinases (MMP-13) and aggrecanases (ADAMTS5) are 

upregulated by shear which may influence the breakdown of the matrix.  Western blot 

may also be another method although probably less desirable to try to quantify the 

alteration of proteins expressed after shear.  

  Although we tested viability of the cells after shear, it would be good to 

characterize this more fully.  Studies have shown that fluid shear stress can induce 

apoptosis and full characterization of this would be absolutely necessary if this system 

were to be used further, including time course and intensity of apoptosis induced over 

various levels and exposure periods of shear stress.  However, some assays for apoptosis 

would be very challenging in this system.  DNA fragmentation assay cannot be 

performed without contaminating the device with radioactive isotopes which would need 

to be pulsed into the cultures prior to our shear treatment.  As many of the better 

apoptosis assays can be very costly they are often done on small volume culture sizes, 

however samples in this system must be cultured in large Petrie dishes to be compatible 
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with the cone-plate setup.  Caspase-3 activity might be an option to test this activity in 

cultures following shear.  However, this would require significant dilution of the large 

Petrie dish culture collection to accommodate the smaller volumes testable with a single 

kit.  Assessment of Bax and Bcl-2 by western blot may be an option.  Furthermore, MTT 

could be another assessment of viability although this assay arguably not strictly a 

measurement of apoptosis so much as assessing the level of mitochondrial activity.  

Live/dead staining may be possible if the microscope can accommodate the large Petrie 

dish.  This would also be interesting to assess if cells are equally viable throughout the 

culture dish or if variations in shear at regions of the plate alter the viability in that 

region, including at increasing levels of shear. 

As the shear stress model did not turn out thus far to be a method of studying 

guided increase of differentiation, it may be more productive to alter the perspective and 

develop protocols for the device suitable for the study shear induced apoptosis or stress, 

such as may be observed in osteoarthritis.  This would still hinge on future results 

characterizing if apoptosis is induced by the system or if differentiation actually is 

induced under different conditions.  As mentioned above, Aim 1 future work suggested 

characterizing the potential use of 24,25 to limit or treat occurrences during arthritis.  If 

the shear system could be characterized as a good model of physiologically relevant shear 

induction of apoptosis or death, then coordinated studies involving  24,25(OH)2D3 could 

determine if this hormone could also rescue chondrocytes from this inducer of death.  

This along with Pi-induced apoptosis would be two relevant forms of stress to cells in 

osteoarthritic cartilage and would lend more credence to the potential therapeutic benefit 

of this molecule as a drug. 
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To further characterize mechanotransduction in growth plate chondrocytes, other 

methods of culture or mechanical stimulation could be tested (potentially requiring 

acquisition of additional equipment) to expand the scope of what our system was able to 

study.  Chondrocytes can benefit from three-dimensional culture and perhaps another 

system could be used to mechanically stress the cells in another way in a 3-D culture 

perhaps in alginate or another hydrogel.  Other devices could be purchased or custom-

made that could apply different forms of mechanical loading to the cells such as cyclical 

strain, compression, or hydrostatic pressure.  Chondrocytes have shown varied responses 

to different kinds of mechanical loading and another type may prove more relevant to 

growth plate chondrocytes specifically.  Finally we have focused on using resting zone 

chondrocytes or 24,25(OH)2D3-sensitive cells in these studies, and similar experiments 

could be performed with chondrocytes from the proliferative zone of the growth plate.  

 

Integrin Mediated Mechanism of Mechanotransduction 

 More work should be done to characterize how integrins may be involved in 

mechanotransduction in the growth plate.  First, more evidence could be tested to verify 

that integrin beta 1 is truly involved in the effects of shear that we observed.  This could 

include studies blocking beta 1 with antibodies and/or RGD peptides or also inducing 

transient silencing with siRNA.  These methods could also be implemented in primary 

cells and not just the cell line model.  It is also important to determine if specific alpha 

subunits are important to pair with beta 1 to mediate mechanotransduction.  If alpha 

subunits prove to be important for mechanotransduction, then interesting studies can be 
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performed to show that receptor specificity is may be important for translation of 

mechanical cues.  Each integrin receptor pair generally has one molecule or class of 

molecules that it binds to with the greatest affinity, but there is some level of ligand 

promiscuity between different integrin receptors.  Furthermore, some of these molecules, 

such as COMP, can alter conformation in different conditions (such as during calcium 

binding) and this alters which integrin receptor has greater affinity for the molecule.  

Using experimental designs exploiting integrin specificity may provide greater 

understanding about how ligand/receptor interactions may be involved in translation of 

mechanical signals.  Other experiments could apply shear to cells cultured on a surface 

coated with specific proteins to also exploit some of these analyses.     

 Other studies could focus on deciphering intracellular mechanisms of integrin-

mediated mechanotransduction.  Autocrine factors and signaling cascades have been 

shown to be activated mechanically via integrins and additional studies could use 

inhibitors to test if blocking specific steps of suspected pathways are involved.  Integrins 

interact on the intracellular side of the membrane with other molecules such as vinculin, 

talin, focal adhesion kinase, and cytoskeletal components.  Many studies could target 

methods of disruption of these specific players to determine their involvement in cell 

signaling also. 

 

Successful Prioritization and Considerations Moving Forward 

There is potentially much more valuable knowledge that could be gleaned by 

continuing with these studies.  Some aspects should be considered when contemplating 
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what work may be most valuable or effective in the acquisition of productive knowledge.  

First, regarding the therapeutic effects of 24,25(OH)2D3, it should be strongly considered 

what would validate this for potential clinical use and proof of efficacy in humans.  If it 

turns out that 24,25(OH)2D3 is not efficacious in treating osteoarthritis, it may actually be 

indicative that part of the etiology of this disease is caused by a loss of sensitivity of 

articular chondrocytes to this hormone.  This would be very laborious to determine the 

mechanism, but may be very valuable and of great clinical impact to determine this 

mechanism. 

 There are a number of challenges to consider when using the cone-plate system as 

we did.  The greatest challenge was the limited amount of sample size.  It took a great 

amount of time to simply characterize the effects of different levels of shear on a few 

chondrocytic markers in two cell types.  Then to start considering the effects of time by 

harvesting samples at the end of shear or 24 hours later expands the work greatly again.  

Furthermore, it would be quite valuable to consider more time points especially during 

shear and after the end of shear, but as can be observed this gets exponentially larger very 

quickly.  It would be advisable to only choose one or two levels of shear when expanding 

to several time course measurements and the most important assays.   

Compounding this problem is the fact that multiple parameters cannot be 

expanded within a single experiment (due to limited number of cone-plates) so several 

repeats of experiments at the same parameters must be performed before obtaining a 

reliable sense of the average response (typically by observing treatment-to-control ratios 

between several independent experiments for only one combination of parameters).  If 

significantly more studies were to be pursued using the cone-plate device it may be 
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advisable to invest in additional devices so the studies could be completed much more 

quickly.  The other challenge with collecting data over such a long term is that variation 

in the cone plates or the associated equipment (incubators, vacuum pumps, new batches 

of media sera, etc.) can be much more significant over long periods of time.  When 

experiments can be repeated over a few weeks versus a few months these long-term 

variables are less influential.  Finally, more and more literature is arguing that fluid shear 

stress on monolayer culture (while it is pertinent and often more convenient) may not be 

the most physiologically relevant form of mechanical stimulation for testing responses by 

chondrocytes.  These factors should be carefully evaluated at the onset to ensure that 

time-intensive experiments have the greatest probability of productivity, especially 

compared to other projects that might be able to accumulate data at a faster rate.   

 


